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Chapter 1

Introduction

1.1 Overview

The interest in the field of thermomechanics at the nanoscale has grown at a

tremendous pace in the last decade, thanks to the availability of novel material

processing and growth techniques and to the emergence of new detection methods.

The interest is both scientific and technological.

The mechanics and thermal dynamics are expected to drastically change as

objects dimensions shrink. Mode quantization, both bulk and surface, become

important. Fluctuations in both sample dimensions and “environment” temper-

ature start affecting the macroscopic response. The thermomechanical dynamics

takes places on a time scale ranging from few picoseconds to tens of nanosecond

and on sub-µm length scales. These scales question the applicability of theoretical

frames so far applied to bulk systems and call for experiments providing fast-time

resolution and low-perturbing sensitive probes.

Under an applicative standpoint, issues such as thermal management in na-

noelectronic devices, thermomechanical responses in MicroElectroMechanical Sys-

tems (MEMS) and Opto-Acoustical devices in the hypersonic frequency range for

both high resolution imaging and mass trafficking, just to mention a few, are of

1



1.2 Introduction Pag. 2

paramount importance.

The present work stems from this context and focuses on surface-based phononic

crystals as toy systems allowing to access, in conjunction with time-resolved ul-

trafast optics, both thermal and mechanical properties of nanosystems. These

systems are periodic elastic composites of two or more vibrating materials, ob-

tained patterning the surface of a substrate material either by metal deposition or

substrate etching.

All-optical time-resolved experiments in a diffraction scheme, requiring a peri-

odic optical lattice such as a surface phononic crystal, allow to deliver an energy

density dUV to the nanostructure. The same technique allows following, in the

time domain, the energy relaxation dUV from the nanostructure to the substrate,

serving as an external bath. Both the thermal δQV and mechanical energy δWV ,

branching from the absorbed total energy dUV , can be followed. The optical

probe, besides providing time-resolution, is a non-contact low-perturbing probe.

This peculiarity is particularly important for detection of minute thermal fluxes

and displacements fields.

As far as applications, assessing the role of geometry and material parame-

ters of surface phononic crystals, with respect to surface wave generation, paves

the way to the engineering of hypersonic surface acoustic waves generators and

detectors beyond a trial-and-error approach. Surface-based phononic crystals, in

conjunction with ultrafast optics, thus provide an ideal system to investigate both

nanocalorimetry and nanomechanics and a valuable generation/detection scheme

for hypersonic surface waves.

1.2 Outline

This work is organized as follows: in Chapter 2 we review the background and

advances on ultrafast generation and detection of thermal gradients and pseu-
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dosurface acoustic waves in two-dimensional lattices of metallic nanostructures.

Comparing the experimental findings to the numeric analysis of the thermome-

chanical problem, these materials emerge as model systems to investigate both the

mechanical and thermal energy transfer at the nanoscale.

In Chapter 3 we present a theoretical framework allowing to properly address

the nature of surfacelike eigenmodes in a 2D hypersonic surface phononic crystal.

An overall comprehension of this physics is still missing, due to the fact that there

is no distinction between the eigenmodes of the surface-based nanostructures and

the surface acoustic modes of the semi-infinite substrate, the solution of the elastic

equation being a pseudosurface acoustic wave partially localized on the nanostruc-

tures and radiating energy into the bulk. This problem is solved by introducing

a surface-likeness coefficient as a tool allowing to identify pseudosurface acoustic

waves and to calculate their line shapes. Having accessed the pseudosurface modes

of the composite structure, the same theoretical frame allows reporting on the gap

opening in the now well-defined pseudo-SAW frequency spectrum. We show how

the filling fraction, mass loading, and geometric factors affect both the frequency

gap, and how the mechanical energy is scattered out of the surface waveguiding

modes.

In Chapter 4 we explore the heat transfer δQV from the nanostructure to the

substrate. That is the realm of nanocalorimetry. Over the last century calorimetry

has been the method of choice for the investigation on thermodynamic properties

of matter. Conventional calorimetry, however, is limited to sample sizes of few

tens of micrograms. To overcome the downsizing limits of conventional calorime-

try, we rely on all-optical time-resolved techniques. In this Chapter the thermal

dynamics occurring in such experiments are theoretically investigated from 300 to

1.5 K. We report ab-initio calculations describing the temperature dependence of

the electron-phonon interactions for Cu nanodisks supported on Si. The electrons

and phonons temperatures are found to decouple on the ns time scale at ∼ 10 K,

which is two orders of magnitude in excess with respect to that found for standard
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low-temperature transport experiments. Accounting for the physics behind these

results, we suggest an alternative route for overhauling the present knowledge of

the electron-phonon decoupling mechanisms in nanoscale systems by replacing the

mK temperature requirements of conventional experiments with experiments in

the time-domain.

In Chapter 5 the mechanical energy transfer δWV from the nanostructure to

the substrate is explored. We present a theoretical framework allowing to properly

investigate the optical generation of pseudosurface acoustic waves in a hypersonic

surface phononic crystal. Exploiting finite-elements analysis, together with the

models developed in Chapters 3 and 4, we follow step by step in the time domain

the initial impulsive heat-driven displacement launching pseudo-SAWs and evalu-

ate their lifetime. We then test our approach against the results of time-resolved

optical diffraction experiments performed on the same composite systems [1].



Chapter 2

State of the art

The use of femtosecond laser pulses to impulsively excite thermal and mechanical

transients in matter has led, in the last years, to the development of picosecond

acoustics. Recently, the pump-probe approach has been applied to nanoengineered

materials to optically generate and detect acoustic waves in the GHz frequency

range. In this Chapter, we review the background and advances on ultrafast

generation and detection of thermal gradients and pseudosurface acoustic waves in

two-dimensional lattices of metallic nanostructures. Comparing the experimental

findings to the numeric analysis of the thermomechanical problem, these materials

emerge as model systems to investigate both the mechanical and thermal energy

transfer at the nanoscale.
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2.1 Picosecond ultrasonics

The use of ultrafast laser pulses (pulse duration ≤ 1 ps) to generate and detect

thermomechanical transients in matter opened the field of picoseconds ultrason-

ics [2]. The basic idea is to use sub-ps light pulses in a “percussion” approach,

in which an intense pulse (pump), focused on an area A of a solid surface, im-

pulsively delivers an energy dU within the light penetration depth Λ, inducing a

non-equilibrium local heating of both electrons and lattice on the ps-timescale.

The local temperature increase

∆T = [dU/(AΛC)] · e−z/Λ , (2.1)

with C as the specific heat per unit volume, is coupled to a sudden lattice expansion

through the thermal expansion coefficient α. The photoinduced thermoelastic

stress is able to launch strain pulses η(z, t) propagating away from the excited

surface along the direction z, regulated by [3]:

η (z, t) =
dUα

AΛC

1 + ν

1 − ν
f (z − vt) , (2.2)

ν being the Poisson ratio and f (z − vt) the function describing the shape of the

strain pulse, moving at the longitudinal sound velocity v. The dependence of the

refractive index on the strain, through the photoelastic constant, allows to follow

the propagation of strain pulses by means of a second delayed pulse (probe). An

energy per pulse of the order of dU ∼ 1 nJ, easily available by means of Ti:sapphire

oscillators producing ∼ 120 fs light pulses, can be exploited to impulsively heat

semiconductor or metal samples leading to temperature increase ∆T ∼ 0.1−10 K,

implying thermoelastic stresses ranging from 0.1 to 1 Mbar.

The first evidences of picosecond acoustic transients in semiconductors and

metals, reported in the seminal work by Maris et al. [3], triggered the investi-

gation of the microscopic mechanisms responsible for the strain generation. At

present, there is general agreement that, in semiconductors, the accumulation of

the long-lived photo-injected excitations modifies the orbital population, inducing
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an electronic stress coupled to an impulsive contraction or expansion of the lattice

through the deformation potential [4]. This mechanism is always accompanied by

the volume expansion related to the increase of the phonon population through

the anharmonicity of the crystal potential. The latter effect, named lattice ther-

moelasticity, completely dominates in metals, where a rapid intraband relaxation

of high-energy electrons is achieved by means of electron-phonon scattering. The

temperature dynamics of the photoinduced non-equilibrium electrons and phonons

in metals can be satisfactorily described by the two-temperature model (2TM) [5].

The main prediction is a local quasi-thermalization at an effective temperature

T ∗ of electrons and phonons, on the timescale of ∼ 1 ps. The short thermal-

ization time ensures that part of the energy dU of the pump pulse is efficiently

converted into strain energy. This characteristic made very common the use of

metal thin films as light-sound transducer to launch ultrasonic acoustic pulses in

materials [6, 7].

The use of high-energy amplified Ti:sapphire oscillators opened the way to the

investigation of the high-intensity strain regime, where the non-linear effects be-

come effective. Pump pulses with energy of the order of dU ∼ 10−100 nJ generate

acoustic pulses with strain amplitude of the order of 10−3 and a time duration of

the order of 10 ps. In this regime the balance between the increase of the sound

velocity with strain and the decrease of the velocity of the high-frequency compo-

nents of the strain pulse, due to the flattening of the phonon dispersion, results

in the generation of sub-THz acoustic solitons, described by a Korteweg-de Vries

equation [8]. After the first evidences of acoustic solitons generation in semicon-

ductor and transparent media, solitons have been exploited to modulate the band

gap of semiconductor quantum-wells, through the deformation potential [9].

When exciting samples at surfaces, a particular class of solutions of the elas-

tic equation is constituted by surface acoustic waves (SAWs), i.e. acoustic waves

confined at the surface within a depth of the order of their wavelength λ [10].

SAWs in the hypersonic frequency range (≥ 1 GHz) are currently used to ma-
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nipulate electrons in semiconductor devices [11, 12] and photons in microcavi-

ties [13, 14, 15]. The quest for efficient SAWs generation and detection techniques

at ever higher frequencies led to the investigation of SAWs generation by means of

ultrashort laser pulses. In particular, when the pump pulse is focused on a small

area (A ∼ 1−10 µm2) of a solid surface, the large Fourier spectrum allows launch-

ing SAWs at different k-wavevectors. Time-resolved imaging techniques have been

employed to follow on the ps timescale SAW propagation on free surfaces [16, 17],

through grain-boundaries [18], in phononic crystals [19] and in resonators [20].

The possibility to selectively excite bulk quasi-monochromatic acoustic waves

became real by employing engineered materials with artificial periodicities of the

elastic properties. In these systems, the pump pulse induces an impulsive strain

with the wavelength matching the periodicity of the structure. The use of semicon-

ductor superlattices allowed exciting coherent THz acoustic phonons via impulsive

stimulated Raman scattering [21] and, only recently, to access the dynamics of hy-

personic acoustic pulses confined into an acoustic nanocavities [22].

Parallel efforts have been devoted to the use of ultrafast light pulses to ex-

cite acoustic eigenmodes of confined nanostructures, after the first study of the

vibrational modes of gold nanostripes on a fused quartz substrate [23]. Recently,

advances in the preparation of quasi-monodispersed nanostructures enabled, em-

ploying picosecond ultrasonic techniques, to investigate photo-induced coherent

oscillations in metallic nanoparticles [24, 25], nanocolums [26] and nanoprisms [27,

28, 29, 30], achieving optical control of the acoustic vibrations [31]. More recently,

the feasibility of pump-probe measurements on single metallic nanoparticles [30],

exploiting the surface plasmon resonance, opened the way to investigate the me-

chanical properties of single nanostructures, whose shape and interaction with the

environment can be exactly determined by means of electron microscopy tech-

niques [32].



2.2 State of the art Pag. 9

2.2 Sub-nanosecond thermal transport

Notably, the same pump probe technique can be applied to study heat trans-

port in matter [33]. The pump-induced ∆T triggers a heat flow on the sub-ns

timescale. The dependence of the refractive index on the temperature enables fol-

lowing the propagation of heat pulses by means of the probe pulse. This technique,

named time-domain thermoreflectance, has been employed to investigate the ther-

mal conductance at metal-metal [34] and metal-dielectric [33, 35] interfaces and

to disentangle the energy transport related to electron diffusion [34], anharmonic

phonon decay [35] and ballistic phonon transport [36]. Recently, the signature of

ballistic heat transport [37], at cryogenic temperatures, has been reported for a

GaAs crystal covered by a metallic thin film transducer [38]. The extension of this

technique to the study of thermal transport between a single metallic nanoparticle

and the environment is a more difficult task, due to the difficulties in controlling

the properties of the nanoparticle-environment interface [39].

The frontier in this intriguing research field is the investigation of the thermo-

mechanical transients in lattices of metallic nanostructures on surfaces [23, 40, 1,

41, 42]. State of the art nanolithography and patterning techniques allow obtain-

ing metallic nanostructures, whose shapes, dimensions, periodicities and interface

properties can be carefully tuned. The interest in these systems is inherent to the

following features: i) the periodicity, scalable down to ∼ 50 nm [43], that can be ex-

ploited to launch quasi-monochromatic SAWs in the substrate at ∼ 100 GHz [44];

ii) the periodicity of the elastic properties, that induces the opening of a band gap

in the acoustic modes (hypersonic phononic crystals) [45]; iii) the fine control over

the nanostructures-substrate interface, mandatory to study heat transport at the

nanoscale.



Chapter 3

Pseudosurface acoustic waves

in hypersonic surface phononic

crystals

We present a theoretical framework allowing to properly address the nature of sur-

facelike eigenmodes in a hypersonic surface phononic crystal, a composite struc-

ture made of periodic metal stripes of nanometer size and periodicity of 1 µm,

deposited over a semi-infinite silicon substrate. An overall comprehension of this

physics is still missing, due to the fact that there is no distinction between the

eigenmodes of the surface-based nanostructures and the surface acoustic modes of

the semi-infinite substrate, the solution of the elastic equation being a pseudosur-

face acoustic wave partially localized on the nanostructures and radiating energy

into the bulk. This problem is particularly severe in the hypersonic frequency-

range, where semi-infinite substrate’s surface acoustic modes strongly couple to

the periodic overlayer, thus preventing any perturbative approach. The problem

is solved by introducing a surface-likeness coefficient as a tool allowing to identify

pseudosurface acoustic waves and to calculate their line shapes. Having accessed

the pseudosurface modes of the composite structure, the same theoretical frame al-

10
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lows reporting on the gap opening in the now well-defined pseudo-SAW frequency

spectrum. We show how the filling fraction, mass loading, and geometric factors

affect both the frequency gap, and how the mechanical energy is scattered out of

the surface waveguiding modes.
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3.1 Introduction

The idea of creating solids with artificial modulation in their physical parame-

ters [46] has proved fruitful both in the frame of coherent electronic transport and

photonics [47, 48] with the advent of semiconductor superlattices and photonic

crystals [49, 50, 51], respectively. The analogy between photons and phonons sug-

gested considering phononic crystals [52], periodic elastic composites of two or

more vibrating materials, the interest being triggered by the possibility of achiev-

ing a frequency gap in the elastic modes dispersion relations and the wealth of

applications stemming from tailoring the gap itself.

Extensive investigation of acoustic band structures of periodic elastic composite

has been carried out on two-dimensional (2D) phononic crystals both infinite [52]

and surface terminated [53, 54]. The archetypal 2D structure consists of paral-

lel rods embedded in an elastic background. Rods can be actual or virtual ones

(drilled holes). In the real case of a surface-terminated phononic crystal, an inter-

esting class of acoustic modes, addressed as surface acoustic waves (SAWs) (arising

from breaking of the translational symmetry when passing from an infinite to a

semi-infinite medium) propagate confined to the elastic medium surface, the pen-

etration depth being on the order of their spatial period. Recent works elucidated

some of the characteristics of surface acoustic waves in 2D phononic crystals of

different geometrical configurations [55, 56, 57, 58].

The present Chapter focuses on pseudosurface acoustic modes, reminiscent of

surface acoustic waves, in surface-based phononic crystals. These structures are

obtained patterning the surface of a substrate material either by metal deposition

or substrate etching. The influence of a periodically structured overlayer on the

acoustic-field eigenmodes of a thick or thin homogeneous slab has been studied by

many research groups and effects such as band folding [59, 60], mode leakage [61],

opening of frequency gaps [19, 59, 60, 61, 62, 63], and interaction between slab

and overlayer modes [63, 64, 65] have been discussed. Contrary to 2D phononic
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crystals, for surface acoustic modes in surface-based phononic crystals there is no

distinction between the eigenmodes of the nanostructures and SAWs, the solu-

tion of the elastic equation being a pseudosurface acoustic wave partially localized

on the nanostructures and radiating energy into the bulk. This issue is particu-

larly severe in the hypersonic frequency range, where the semi-infinite substrate’s

surface acoustic modes strongly couple to the periodic overlayer, thus preventing

any perturbative approach. In this physical scenario, we present a theoretical

framework allowing to properly address the nature of surfacelike eigenmodes in a

hypersonic surface phononic crystal. We solve the problem introducing a surface-

likeness coefficient as a tool allowing to find pseudosurface acoustic waves and to

calculate their line shapes. Having accessed the pseudosurface modes of the com-

posite structure, the same theoretical frame allows reporting on the gap opening

in the now well-defined pseudo-SAW frequency spectrum. We show how the filling

fraction, mass loading, and geometric factors affect both the frequency gap, and

how the mechanical energy is scattered out of the surface waveguiding modes.

These results are of interest also from an applicative stand point. The quest for

hypersonic acoustic waveguides [66], sources of ultrafast coherent acoustic waves

and nano-optoacoustic transducers in general, operating at ever higher frequen-

cies, requires patterning periodic structures of ever decreasing periodicities. In

this frame, surface-based phononic crystals provide a technological advantage over

2D phononic ones, the processing technique involving the surface only, being eas-

ily scalable below 100 nm and suitable for high-frequency transducers technology.

The theoretical tool here presented, together with the comprehension of how the

construction parameters affect the frequency gap and surface waveguiding mode,

will be a valuable tool for inspecting the pseudo-acoustic modes relevant for ap-

plications in view of device engineering beyond a trial-and-error approach.

This Chapter is organized as follows: in Section 3.2 we outline and solve the full

mechanical problem, calculating the vibrational normal modes of the composite

system. The presence of periodic nickel stripes modifies the properties of surface
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h

λ

Nickel stripes

Silicon substrate

Figure 3.1: Schematic diagram of the surface phononic crystal. Isotropic nickel

stripes of width d and height h are deposited on a crystalline silicon substrate.

The grating has period λ. Propagation direction is along the x axis, surface

normal to the bulk is along the y axis.

waves [10, 67, 68]. The SAW is no longer an eigenmode of the elastic eigenvalue

problem. Proper assessment of a pseudo-SAW in a surface-based phononic crystal

is achieved in Section 3.3. We introduce a SAW-likeness coefficient permitting to

discriminate pseudo-SAWs among the entire set of eigenmodes. Investigation of

the gap opening in a surface-based phononic crystal as a function of the filling

fraction p, beyond a perturbative approach, is presented in Section 3.4. We show

how the frequency gap depends on the set of geometric factors {p, h} and mass

loading {m, ρ} - m, ρ and h being the nickel stripe’s mass, density and height,

respectively. In Section 3.5 we analyze the energy distribution in the system as a

function of p and relate it to the scattering of SAWs into the bulk.

3.2 Mechanical model

We assume the system to be an elastic continuum composed of a periodic metallic

grating deposited on a silicon substrate. In Fig. 3.1, we consider the general

configuration where elastic isotropic nickel stripes of width d and height h = 50 nm

are deposited on a crystalline silicon substrate. The grating has period λ = 1 µm,

thus ensuring pseudo-SAWs in the hypersonic range. Calculations are performed

increasing d, in order to cover the entire filling fraction p range (0, 1), where p =



3.2 Pseudosurface acoustic waves in hypersonic... Pag. 15

Table 3.1: Material properties for Si substrate (Ref. [70]) and Ni stripes

(Ref. [71]): Young’s modulus E, Poisson’s ratio σ, and mass density ρ.

E (GPa) σ ρ (Kg/m3)

Si substrate 131 0.27 2330

Ni stripes 219 0.31 8900

d/λ, and explore different regimes, from a perturbative one (p ≪ 1) to substrate

full coverage (p = 1). The acoustic equation of motion governing the displacement

u(r, t) of the composite system is

∂j [cijmn (r) ∂num] = ρ (r) üi , (3.1)

where ρ (r) and cijmn (r) are the position-dependent mass density and elastic stiff-

ness tensor, respectively, and the summation convention over repeated indices is

assumed. For an harmonic time dependence eiωt + c.c., Eq. 3.1 reads

∂j [cijmn (r) ∂num] = −ρ (r) ω2ui . (3.2)

The eigenvalue problem is solved via the finite-elements method [69]. As shown

in Fig. 3.2(a), the model consists of a two-dimensional silicon rectangular cell with

a nickel stripe on top. The material properties for the silicon substrate and the

nickel stripes, that enter in the expression of the elastic stiffness tensor, are re-

ported in Table 3.1. The silicon substrate’s crystalline orientation is accounted

for in the expression of the elastic stiffness tensor and, in the present case, the

x axis is taken along the Si(100) crystalline direction. To reproduce the entire

nanostructured composite from the single unit cell, the displacements u1 and u2,

calculated, respectively, on side 1 and 2 of the cell [see Fig. 3.2(a)], are related

by u1 = eiKx,nλ
u2, as required by the Bloch theorem, where Kx,n = kx + 2πn/λ

and kx ∈ (−π/λ, π/λ). The displacement is fixed to zero on the base boundary
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and the height L of the cell is set to 100 µm, two orders of magnitude greater

than the system’s periodicity. This condition is required to achieve a density of

states fine enough to appreciate the surface-confined system’s normal modes also

for p ≪ 1 and p ∼ 1, the eigenfrequencies spacing scaling as 1/L. Attention is

devoted in choosing the finesse of the quadratic-ordered mesh, enabling accurate

displacements calculations despite: i) the size discrepancy between the nanostruc-

ture and the silicon cell; ii) the two orders of magnitude difference between L

and λ. Unless otherwise stated, the calculations are performed with n = 1 and

kx = 0 (Kx,1 = 2π/λ), corresponding to the first harmonic at the center of the

surface Brillouin zone, calculation of the eigenfrequencies as a function of the wave

vector parallel to the surface of the substrate not being the main scope of this work.

3.3 Pseudo-SAW

On the contrary to bulk modes, SAWs are confined in a thin layer starting at the

surface of the substrate. As seen in Fig. 3.2(b), in the case of a pure silicon slab,

without stripes on top, the displacement field vanishes within a depth on the order

of 1 µm, i.e. of the SAW wavelength, corresponding to the chosen grating period λ.

The total displacement color scale normalized over its maximum value is reported,

together with the displacement field. These modes are the elastic analogs of the

electronic surface states [72] or the electromagnetic evanescent waves encountered

at the surface of a semi-infinite solid [73]. The surface wave is an exact solution

of the eigenvalue problem, twofold degenerate under translational symmetry. The

two solutions uu and ug have, respectively, sin (ungerade) and cos (gerade) sym-

metry. In Fig. 3.2(b) only the sin symmetry solution is reported. The calculation

of the twofold-degenerate eigenfrequency at the Brillouin-zone center (n = 1) gives

ν̃ = 4.92 GHz, in agreement with data for a SAW propagating along Si(100) [67].

On a uniform flat surface a surface wave does not radiate into the bulk and has
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Figure 3.2: Nickel stripe on silicon substrate. (a) The top 2 µm portion of

the 2D rectangular unit cell is reported. The cell geometry is divided in three

parts: A. Ni stripe, B. 1 µm top portion of Si substrate, C. 99-µm-thick Si bulk

portion. Bloch boundary conditions are set on sides 1 and 2 of the substrate.

The periodicity is λ = 1 µm. The height of the Si cell is 100 µm. The Ni stripe

is h = 50 nm high and, in this figure, d = 320 nm wide. In figures (b) trough (f),

the deformation and arrows correspond to the displacement field, while the color

scale refers to the normalized total displacement. (b) Sin-like SAW solution for

a pure silicon slab. The orthogonal cos-like eigenfrequency degenerate solution is

not reported. (c) Cos-like and (d) sin-like pseudo-SAW solutions for d = 320 nm.

(e) Cos-like and (f) sin-like SAW eigenfrequency degenerate solutions for substrate

full coverage.
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a penetration depth ∼ λ [10]. The presence of periodic nanostructures is expected

to modify the properties of the SAW, perturbing the stress and velocity fields

associated with SAW propagation [23, 1, 74]. In the periodic composite system

the SAW modes are not solutions of the eigenvalue problem. The eigenmodes of

the full structure, whose displacement field most closely resemble the unperturbed

SAWs, are shown in Figs. 3.2(c) and 3.2(d). The twofold degeneracy is lifted and a

band gap opens: one mode, with sin symmetry, is found at ν̃u = 4.27 GHz, whereas

a second mode, with cos symmetry, is found at ν̃g = 4.60 GHz. The calculated

displacement field is Rayleigh-type in region B, evident from the alike displace-

ment fields of sin-like solutions in region B of Figs. 3.2(b), 3.2(d) and 3.2(f), and

bulk-like in region C, clear from the field distribution in region C of Figs. 3.2(c)

and 3.2(d). We address these modes as pseudo-SAWs. Periodic nanostructures

force the previously unperturbed surface waves to radiate elastic energy into the

bulk. The analog in the electromagnetic case is diffraction of surface plasmons

into far field by a periodic metallic grating deposited on the substrate surface. In

the acoustic case, the stress at the Ni-Si interface, needed to force the stripes to

follow the motion of the surface, acts as the source of energy radiation into the

bulk, as explained by Lin et al. [23]. In terms of scattering of unperturbed SAWs,

this effect can be rationalized as the coupling of free-surface modes to the silicon

bulk modes.

The eigenmodes for the case of full substrate coverage (p = 1) are reported

in Figs. 3.2(e) and 3.2(f). The band gap closes, the degeneracy is recovered with

ν̃ = 4.12 GHz, and the eigenvectors are SAWs, hence no energy is radiated in the

bulk. The solution is similar to that reported in Fig. 3.2(b) for p = 0; the overlay

downshifts the value of ν̃.

In the previous discussion, the concept of pseudo-SAW was suggested on the

basis of similarities between its displacement field and that of a pure SAW. Never-

theless the theory lacks a formal definition for a pseudo-SAW or a procedure allow-

ing to spot out such solutions from the infinite eigenvalues set satisfying Eq. 3.2,
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in the present geometry. With this aim in mind, the SAW-likeness coefficient is

defined as

α(ν)
.
=

〈EA(ν)〉 + 〈EB(ν)〉

〈Etot(ν)〉
, (3.3)

where 〈EA(ν)〉, 〈EB(ν)〉, and 〈Etot(ν)〉 are the time-averaged mechanical energy

contents of u (r) in region A, B, and in the entire unit cell, respectively [see

Fig. 3.2(a)]. The calculation is here performed starting from u (r),

α (ν) =

∫
A ρ (r)u2(r)d3

r +
∫
B ρ (r)u2(r)d3

r∫
tot ρ (r)u2(r)d3r

. (3.4)

The SAW-likeness coefficient α (ν) outlines which eigenmodes of the system have

mechanical energy mainly localized within a depth λ (where λ is both the nanos-

tructure’s period and the penetration depth of an unperturbed SAW of the same

wavelength). In Fig. 3.3, we report α (ν) for three values of p. Two distributions,

αg (ν) and αu (ν), emerge from the plot, corresponding to the cos-like and sin-

like displacement profiles, respectively. We define pseudo-SAWs the eigenmodes

with frequencies ν̃g and ν̃u, corresponding to the two distributions’ maxima. The

pseudo-SAWs are the solutions that most likely resemble the unperturbed SAWs.

The eigenfrequency degeneracy is removed and the opening of a frequency band

gap is directly shown. We pinpoint that the SAW-likeness coefficient is easily in-

terpreted as the SAW line shape, the line shape concept arising because, in the

composite system, the SAW is not an eigenmode. A more correct definition of

SAW line shape and its relative linewidth will be given in Section 5.4.

In Fig. 3.3(a) the calculation for a sample with p = 0.1 (d = 100 nm) is

reported. For small filling fractions, nickel stripes act as a weak perturbation to

the modes of the underlying substrate. The values of the pseudo-SAW frequencies

and the corresponding SAW-likeness coefficients, as well as the linewidth γ [full

width at half maximum (FWHM)] of the two distributions, are reported in Ta-

ble 3.2. The fact that αg(ν̃g) > αu(ν̃u) means that the grating affects the sin-like

SAW more than the cos-like one. Furthermore, the grating couples the unper-

turbed sin-like SAW over a wider range of modes: γu > γg. The frequency gap is
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Figure 3.3: SAW-likeness coefficient α (ν) versus the calculated eigenfrequen-

cies. Two distributions arise, αu (ν) and αg (ν), corresponding to sin-like (empty

circles) and cos-like (crossed circles) displacement profiles. Calculation for con-

figurations with different filling fraction are reported: (a) p = 0.1, (b) p = 0.32,

and (c) p = 0.9. Solid lines are intended as a guide to the eye.
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Table 3.2: Calculated pseudo-SAW frequencies, corresponding SAW-likeness

coefficients, and linewidth γ (FWHM) for both gerade and ungerade distributions.

p 0.1 0.32 0.9

ν̃g (GHz) 4.72 4.60 4.00

αg (ν̃g) 0.38 0.12 0.70

γg (GHz) 0.064 0.231 0.013

ν̃u (GHz) 4.59 4.27 4.15

αu (ν̃u) 0.18 0.07 0.73

γu (GHz) 0.101 0.300 0.010

∆ν̃ = ν̃g − ν̃u = 0.13 GHz. Both ν̃g and ν̃u are lower than the unperturbed SAW

eigenfrequency ν̃ = 4.92 GHz.

Increasing the filling fraction to p = 0.32, we obtain the distributions reported

in Fig. 3.3(b). The physics is now well beyond the perturbative approach: larger

linewidths and lower values of the SAW-likeness coefficient for the two pseudo-

SAWs are the signatures of a stronger SAW-stripes interaction, as compared to

the case of p = 0.1. This leads to a higher coupling of surface waves with the

bulk modes of the system, a confirmation to the evidence given in Figs. 3.2(c)

and 3.2(d). The frequency gap is ∆ν̃ = 0.33 GHz. Both ν̃g and ν̃u are further

downshifted with respect to ν̃. The pseudo-SAW frequency lowering is strongly

dependent on the displacement field symmetry.

Increasing the filling fraction to p = 0.9, close to the silicon full coverage [see

Fig. 3.3(c)], narrow linewidths and high peaked distributions resemble the fre-

quency twofold-degenerate surface wave solutions shown for p = 1 in Figs. 3.2(e)

and 3.2(f), consistently with a reduced frequency gap ∆ν̃ = −0.15 GHz. Interest-

ingly ∆ν̃ changes sign and the ungerade pseudo-SAW is now less affected by the

periodicity as compared to its gerade counterpart. For the case of p = 1, ν̃ is in
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Solid lines are fits to data. Dotted lines are a guide to the eye.

agreement with the analytical theory developed by B. Auld [67].

To further test the soundness of the pseudo-SAW definition adopted in the

present work, we calculated for p= 0, 0.32, and 1, the dispersion for the first har-

monic pseudo-SAW modes: kx ∈ [−0.2π/λ, 0.2π/λ] and n = 1. The outcome is

shown in Fig. 3.4. The dispersion relation for the semi-infinite silicon slab (p = 0)

starts at ν = 4.92 GHz and is linear with a slope vs = 4900 m/s, in agreement

with the speed of sound reported for SAW on Si(100) [67]. For the full overlay

case (p = 1), the dispersion starts at 4.12 GHz. Both solutions are true SAW

eigenmodes of the system. For the case of p = 0.32, a gap opening is observed

and the two dispersion branches for the pseudo-SAWs remain correctly confined

between their p = 0 and p = 1 analogs.
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3.4 Frequency gap

Having formally defined the pseudo-SAW, we now address the issue of the fre-

quency gap in the pseudo-SAW modes. In Fig. 3.5 the pseudo-SAW frequencies

and band gap calculated over the entire filling fraction range are shown. For

p 6= 0, the pure silicon slab eigenfrequency degeneracy is lifted. As p increases, ν̃g

decreases until it reaches a plateau for p = 0.2. The plateau lasts for p ∈ (0.2, 0.5)

then, for p > 0.5, ν̃g decreases monotonically till it jumps back to the SAW value

for full coverage as soon as the stripes’ width d reaches the size of the periodicity,

becoming a complete overlay. There is a geometrical explanation for the discon-

tinuity [see inset of Fig. 3.5]. For p = 1, periodic boundary conditions become

effective also on the stripe’s sides, the cos-like pseudo-SAW solution ug undergoes

a transition from free to constrained displacement on the stripe’s lateral bound-

aries. The same constraints do not affect uu because they are set where the nodes

of the sin-like solution are found [see Fig. 3.2(f)]. In an experiment, for the above

mentioned discontinuity, a steep positive derivative ∂ν̃g/∂p for p → 1 should be

expected in place of an abrupt transition. Concerning ν̃u, it is a monotonically de-

creasing function of p. It decreases with a steep slope for p < 0.3. It then changes

slope stabilizing to an almost constant value all the way to p = 1. For p < 0.75,

ν̃g > ν̃u; at p = 0.75 the eigenvalues cross; for p > 0.75, ν̃g < ν̃u; degeneracy is

recovered for p = 1. In summary, the frequency gap ∆ν̃ opens as soon as p 6= 0.

The maximum value ∆ν̃ = 0.40 GHz is attained when the silicon surface is close

to half coverage. For higher filling fractions, the gap decreases to ∆ν̃ = 0 for

p = 0.75. For values of p in excess of 0.75, ∆ν̃ < 0 and decreases till it makes an

abrupt transition back to ∆ν̃ = 0 for p = 1.

The present results also show the limits of applicability of the perturbative

approach [58]. Within a perturbative scheme the relative frequency shift is pro-

portional to the filling factor:

(ν̃(p) − ν̃(0))

ν̃(0)
∝ (

h

λ
)p . (3.5)
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Figure 3.5: Left axis: pseudo-SAW eigenfrequencies ν̃g (crossed circles) and

ν̃u (empty circles) versus surface filling fraction p (or stripes width d in nm, top

axis). Right axis: pseudo-SAW frequency gap ∆ν̃ (triangles). The horizontal line

is the ∆ν̃ = 0 line and refers to right axis only. Inset: magnification of the graph

for high filling fractions p is shown. Lines are a guide to the eye only.

Calculation of the relative frequency shift, on the basis of the results reported in

Fig. 3.5, shows that linearity holds up to p ∼ 0.1. For values of p in excess of 0.1

one has to rely on the full calculations here reported.

In the general case, for a fixed periodicity λ, the pseudo-SAW frequencies

(both gerade and ungerade) are functions of the parameters {p, h, m, ρ}: ν̃ =

f (p, h, m, ρ). The four parameters are not mutually independent, being ρ ∝

m/(hp). ν̃ is then defined in a four-dimensional space and it is a function of

three parameters only, the fourth being fixed by the choice of the other three.

For instance, each data point reported in Fig. 3.5 (left axis) is calculated having

fixed p, h, and ρ independently. The plots are then obtained spanning p over the

range (0, 1), thus exploring a particular trajectory ν̃(p, h = 50 nm, ρNi) on the
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hyper-surface ν̃(p, h, ρ). A full description is computationally too time consuming

and would not add much to the comprehension of the physics without slicing the

hypersurface along particular hyperplanes or trajectories.

To get a deeper physical inside, the effects on ν̃ of the geometric factors {p, h}

and mass loading {m, ρ}, are here explored. We start considering a reference sys-

tem configuration with p = 0.2, h = 50 nm, and ρ = ρNi, hence the value of m

is fixed to m(ref). The pseudo-SAW frequencies, calculated in the reference con-

figuration, are ν̃
(ref)
g and ν̃

(ref)
u . To test the contribution of the stripes’ geometry,

m and ρ are kept fixed at their reference values, while p is allowed to increase

from 0.2 to 0.9. Doing so, the value h decreases. In Fig. 3.6(a) the dependences of

ν̃i − ν̃
(ref)
i (with i = {g, u}) and ∆ν̃ on the geometric factor {p, h} are shown. The

geometric factor upshifts both frequencies, ν̃u being more affected than ν̃g and ∆ν̃

decreasing monotonically. The effect of the geometry in surface-based phononic

crystal fits well with the results reported by Tanaka et al. [53] for a 2D phononic

crystal in which no mass loading effect is to be expected (the band-gap definition

is reversed in sign with respect to our case). This makes us confident that we

are properly disentangling the geometry from mass loading effects. To inspect

the mass loading effect, p and h are kept fixed at their reference values while ρ

is raised up to 4.5 times the Ni density. Doing so, the value of m increases. In

Fig. 3.6(b) the dependences of ν̃i− ν̃
(ref)
i and ∆ν̃ on the mass loading factor {m, ρ}

are shown. The mass loading downshifts both frequencies, ν̃u being more affected

than ν̃g and ∆ν̃ increasing monotonically. The functions in Fig. 3.6(a) cannot

be compared with the ones reported in Fig. 3.6(b) nor the absolute values are of

relevance. The importance stands in the qualitative functions behavior, showing

the disentangled physical effects of geometry and mass loading over ν̃i and ∆ν̃.

The present analysis shows that in a device the pseudo-SAW frequency gap results

from a combination of geometry and mass loading factors, the two affecting the

pseudo-SAW frequencies in opposite ways. A trade-off between p and m has to

be foreseen for tailoring the pseudo-SAW frequencies or frequency gap in view of



3.4 Pseudosurface acoustic waves in hypersonic... Pag. 26

0.6

0.4

0.2

0

ν i −
 ν

i (
re

f)
  (

G
H

z)

0.90.80.70.60.50.40.30.2

Filling fraction  p

-0.3

-0.2

-0.1

0

0.1

0.2

F
requency gap  (G

H
z)

 cos symmetry
 sin  symmetry
 frequency gap

-2.0

-1.5

-1.0

-0.5

0

0.5

ν i −
 ν

i (
re

f)
  (

G
H

z)

4.54.03.53.02.52.01.51.0

Relative stripes mass density  r/rNi

0.6

0.4

0.2

0

F
requency gap  (G

H
z)

 cos symmetry
 sin  symmetry
 frequency gap

(a)

(b)

~
~

~
~

Figure 3.6: Geometric and mass loading effects on ν̃. The reference system

configuration is p = 0.2, h = 50 nm, and ρ = ρNi, hence m is fixed to m(ref).

The pseudo-SAW frequencies, calculated in the reference configuration, are ν̃
(ref)
g

and ν̃
(ref)
u . (a) Exploring the geometric effect: the mass loading factor {m, ρ}

is kept at the reference value, the variable being the geometric factor {p, h}.

(b) Exploring the mass loading effect: the geometric factor {p, h} is kept at the

reference value, the variable being the mass loading factor {m, ρ}. Left axis:

pseudo-SAW eigenfrequencies ν̃g (crossed circles) and ν̃u (empty circles). Right

axis: pseudo-SAW frequency gap ∆ν̃ (triangles). The horizontal line is the ∆ν̃ =

0 line and refers to right axis only. Lines are a guide to the eye only.
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possible applications.

3.5 Mechanical energy radiation

In this Section, the energy distribution in the system, for both pseudo-SAW eigen-

modes ug and uu, is studied as a function of p. Energy distribution in surface-based

phononic crystal can be attained from the knowledge of the displacement or veloc-

ity and stress fields. The fields are typically calculated via coupled-mode theory

or scattering theory in Born approximation. These are perturbative approaches.

For instance, in this latter approach the SAW solution for the half-infinite Si slab

is taken as the zero-order wave (impinging wave) used to evaluate the scattering

matrix (the interaction term being brought in by the grating) together with final

states modes (scattered waves). Such an approach loses reliability as the SAW fre-

quency increases. Since the penetration depth of the SAW equals its wavelength

λ, higher SAW frequencies imply stronger surface confinement and, ultimately,

stronger scattering with the periodic grating. This requires considering higher-

order terms in the scattering integral equation in order to achieve a reasonably

precise solution. For surface-based phononic crystals working in the hypersonic

range (λ ≤ 1 µm) the strong confinement is an issue. The theoretical frame

here introduced to define the pseudo-SAW, together with the calculations of the

composite system eigenmodes, can be exploited to tackle the problem of energy

distribution in the system beyond a perturbative approach and the results can be

readily translated in a scattering framework.

The definition given in Eq. 3.3 is here extended to account for the time-averaged

normalized energy content in the three regions outlined in Fig. 3.2(a) and in the

inset of Fig. 3.7,

αx(ν)
.
=

〈Ex(ν)〉

〈Etot(ν)〉
, x = {A, B, C} . (3.6)

In Fig. 3.7 the energy contents αx(ν̃g) and αx(ν̃u) are reported for x =
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for the top 1 µm portion B of Si substrate and the squares are associated with

the silicon bulk C. The dotted lines are a guide to the eye only.

{A, B, C} as a function of the filling fraction p. The results show the mechanical

energy spatial distribution (normalized against the total energy inside the cell)

over the entire filling fraction range, when a pseudo-SAW eigenmode is excited.

For p = 0 the SAW is a true eigenmode, the energy being concentrated, as expected

for a SAW, in region B: αB(ν̃) ∼ 1. For small filling fractions (p < 0.05), at least

for ug, the elastic energy is mostly concentrated in the 1 µm top portion of the

Si slab, where the unperturbed SAW is expected to dump. The grating is much

more effective in scattering energy to the bulk for uu: αB(ν̃u) ∼ αC(ν̃u). This

symmetry-related difference in coupling a SAW to the bulk is a confirmation to

the observed relationship γu ∼ 2γg of Fig. 3.3(a). As p increases to half coverage,
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a greater amount of mechanical energy is transferred from the Si surface region B

to the bulk region C. From the eigenvalue problem perspective, a greater amount

of energy radiated into the bulk translates in energy distributed over a wider range

of eigenmodes of decreasing SAW-likeness coefficient α(ν̃), γ increasing with p for

both gerade and ungerade pseudo-SAWs [see Fig. 3.3(b)]. The maximum values

for both αC(ν̃g) and αC(ν̃u) are attained for p = 0.4, the same filling fraction

maximizing ∆ν̃. For p > 0.4 the trend reverses, being ∂αC(ν̃)/∂p < 0 whereas

∂αA,B(ν̃)/∂p > 0; the relative energy content in the bulk region is transferred in

region B and A. For p ∼ 0.8 the energy content in the Ni stripe equals the energy

content in region B; the equality of energy content holds also between sin and cos

symmetry eigenmodes and pseudo-SAW frequency crossing occurs (see Fig. 3.5).

As the Si full coverage configuration is approached, the radiation into the bulk is

further reduced in favor of a strong mechanical energy confinement in the stripe

and in the top 1 µm portion of Si substrate, the crossing point being for p = 0.9.

For p > 0.9, the oscillation of the Ni stripe starts to energetically dominate and the

stripe behaves as a low-loss acoustic waveguide. The unperturbed SAWs, eigen-

modes of the semi-infinite slab, are now heavily scattered into the Ni overlay. In

the limit of Si full coverage (p = 1), the Ni overlay acts as a lossless waveguide.

The SAW is a true solution of the eigenvalue problem, without coupling with bulk

modes, and it is downshifted in frequency with respect to the overlay-free SAW

by ∼ 0.8 GHz.

3.6 Summary

In the present Chapter, we proposed a theoretical frame allowing to access the

physics of pseudosurface acoustic waves in surface phononic crystals. The pursued

strategy can be applied to any surface phononic crystal, enabling investigation of

pseudo-SAW line shapes, gap opening and mechanical energy scattering beyond
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perturbative approaches, thus finding application also in the hypersonic frequency

range.

We applied the outlined theoretical framework to the case of a hypersonic

surface phononic crystal made of periodic nickel stripe on a silicon substrate. We

then investigated the pseudosurface acoustic wave frequency gap over the entire

filling fraction range, starting from the case where the periodic nanostructures

act as a perturbation, to finally reach the substrate full coverage. A preliminary

understanding of how the construction parameters affect the frequency gap has

been achieved. We showed that the pseudo-SAW frequency gap results from a

combination of geometry {p, h} and mass loading {m, ρ} factors, the two affecting

the pseudo-SAW frequencies in opposite ways. A trade-off between p and m is

thus necessary for tailoring the pseudo-SAW frequencies or frequency gap for the

application at hand. The mechanical energy spatial distribution of pseudo-SAW

as a function of the filling fraction has been studied, potentially allowing to tailor

the device’s parameters in order to minimize the energy content scattered out of

the desired modes.



Chapter 4

Calorimetry at the nanoscale

Over the last century, calorimetry has been the method of choice for the investiga-

tion on thermodynamic properties of matter. Conventional calorimetry, however,

is limited to sample sizes of few tens of micrograms. An alternative route, to

overcome the downsizing limits of conventional calorimetry, relies on all-optical

time-resolved techniques. In the present Chapter the thermal dynamics occurring

in such experiments are theoretically investigated from 300 to 1.5 K. We report ab-

initio calculations describing the temperature dependence of the electron-phonon

interactions for Cu nanodisks supported on Si. The electrons and phonons tem-

peratures are found to decouple on the ns time scale at ∼ 10 K, which is two orders

of magnitude in excess with respect to that found for standard low-temperature

transport experiments. By accounting for the physics behind our results we suggest

an alternative route for overhauling the present knowledge of the electron-phonon

decoupling mechanisms in nanoscale systems by replacing the mK temperature

requirements of conventional experiments with experiments in the time-domain.

31
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4.1 Introduction

In the last decade the advent of nanoprocessing techniques has emphasized the

need for designing non-invasive methodologies to access the realm of the thermal

properties of nanoscale systems [75, 76]. As samples dimensions shrink a variety

of new phenomena have been observed, such as the quantum of thermal con-

ductance [77], and new refrigeration devices proposed [78]. From an applicative

standpoint, issues related to thermal management at the mesoscale constitutes a

major technological challenge and are of paramount importance for the electronic

industry.

Over the last century calorimetry has been the method of choice for the in-

vestigation on thermodynamic properties of matter. Conventional calorimetry,

however, is limited to sample sizes of few tens of micrograms. A successful im-

provement recently arose from micromembrane-based nanocalorimeters [77, 79].

Such devices perform extremely well in terms of sensitivity but their application

range is limited to cryogenic temperatures, they lack time-resolution capabilities

and samples need on-chip integration.

An alternative route relies on all-optical time-resolved techniques. When tack-

ling the problem of measuring the specific heat of a small object a fast non-contact

probe is the optimal choice. The speed requirement is dictated by the fact that

the heat exchange between the sample and the thermal reservoir is proportional

to the sample’s mass. A contact probe of dimensions comparable to the sam-

ple’s one affects the measurement in that one would access the specific heat of

the nanosample and the probe itself. The idea underlying all-optical time-resolved

nanocalorimetry is as follows. A thin metal film or metallic nanosample to be in-

vestigated is placed in thermal contact with a substrate serving as a thermal bath.

An ultrafast laser pump beam serves as the power source, delivering an energy

density dUV to the nanosample. The sample’s temperature time relaxation to the

substrate is measured via a time-delayed probe beam. Several detection schemes
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can be exploited or envisioned. Among them, the time-resolved Near-Infra Red

Diffraction (TR-NIRD) technique [1, 80] detects the changes in the diffracted sig-

nal modulated by the ordered nanostructures thermal expansion.

4.2 Time-resolved nanocalorimetry

Calorimetry is the method of choice for studying the heat transfer process inside

a system. By adopting a Time Relaxation technique, the heat flux is determined

from the temperature time evolution, the overall system consisting in a sample in

contact with a thermal bath. The aim of an archetypal time-resolved calorime-

try experiment is thus to measure the thermalization time of the sample, to the

thermal bath, after being warmed up by an external heat source. The thermal-

ization dynamics is described by means of a Time Relaxation model in which it is

assumed that the sample is warmed up by an external heat source until time t0.

As shown in Fig. 4.1, the sample reaches the temperature T0 while the thermal

bath temperature Tsub remains unchanged. The thermal contact between sample

and substrate is described by a thermal resistance Rth and parallel channels of en-

ergy dissipation are assumed negligible. Under these hypotheses, the temperature

evolution in time follows an exponential decay governed by a relaxation time τ :

∆T (t) = T (t) − Tsub = (∆T )0 e−t/τ , (4.1)

where

τ = CRth , (4.2)

being T (t) the sample temperature, Tsub the fixed thermal bath temperature, Rth

the thermal resistance, C = m · Cm the sample’s thermal capacity, with m the

sample’s mass and Cm the specific heat per unit of mass. The thermal resistance

is directly related to the interface thermal resistivity ρth trough the equation:

Rth =
ρth

A
; (4.3)
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Figure 4.1: Thermalization dynamics described by the Time Relaxation Model.

ρth is a macroscopic quantity accounting for phonons dispersion mismatch on the

two sides of the interface and other eventual microscopic mechanisms limiting the

heat flow between the sample and the substrate, and A is the sample-thermal bath

contact area.

Two fundamental aspects of calorimetry measurements must be considered.

First, the thermalization time τ is proportional to the mass: thermal equilibrium

is achieved on a shorter time span by samples with lower mass. Typically, as dis-

played in Fig. 4.2, samples with m ≥ 50 µg have a relaxation time τ ranging from

ms to hundreds of seconds, depending on the material and the characteristics of

the thermal contact between sample and heat reservoir. Samples with mass on

the order of 10−13 − 10−15 g have τ ∼ ns. The second aspect refers to standard

techniques of temperature probing, that adopt thermocouples measuring a voltage

drop proportional to the temperature variation [see Fig. 4.3]. The thermocouple

probing mechanism does not perturb significantly the system, as far as its mass is

much lower compared to the sample’s. But as the system dimensions shrink to the

nanoscale, such standard calorimetry technique results hard exploitable because
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Figure 4.2: Examples of the thermalization time τ vs. sample mass m propor-

tionality.

when the sample mass is easy comparable to the mass of the measurement appara-

tus, the thermal capacitance will have similar contributions from the sample and

the thermocouple itself, influencing the system’s relaxation time and forbidding

the measurement of the sample’s specific heat.

All-optical time-resolved calorimetry at the nanoscale is a good candidate to

perform calorimetry on mesoscale and nanoscale samples, providing both adequate

measuring speed and non-contact probe. For the aim of this Chapter, the sample

geometry consists of an array of Cu nanodisks deposited on a Si substrate, the unit

cell dimensions are reported in Fig. 4.4. The nanodisks have mass of the order

of 10−15 g. The bottom of the Si substrate is kept at constant temperature Tsub

by a cryostat, whereas insulating boundary conditions apply to the Si cell lateral
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Rth

Figure 4.3: Standard calorimetry technique (from Ref. [81]): (Left) Scheme of

the thermal contact between the sample (blue) and the thermal bath (red) by

means of a thermal resistance Rth. (Right) Sample holder for standard calorime-

try measurements. The thermal contacts are evidenced in yellow.

boundaries.

In a time-resolved framework, after excitation by a single Ti:sapphire pump

pulse (120 fs duration, 1 nJ per pulse, wavelength 800 nm, spatial extension 40 µm

at FWHM and 1 MHz repetition rate), the thermal evolution problem investigated

by the probe pulse is conveniently schematized, at least at ambient temperature,

in three steps. In the first step, the laser pump pulse heats the electron gas of the

metallic nanodisks (sub-picosecond time scale). In the second step, the hot elec-

tron gas thermalizes with the phonons within the disks (picosecond time scale).

Finally in the third step, the disk transfers heat δQV to the silicon substrate

thermalizing with it (nanosecond time scale). After the pump pulse absorption,

the nanodisks thermally expand in function of the change in temperature and

the metallic disk radius variation is directly followed in the time-resolved probe

reflected (or diffracted) signal R:

∆R

R
∝

δa

a
= α∆T , (4.4)
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Figure 4.4: Side and Top views of the simulation unit cell geometry: h = 30 nm.

where a is the nanodisk radius, ∆T is the temperature variation induced by the

pump pulse absorption and α = 16.5 · 10−6 K−1 is the Cu linear thermal expan-

sion coefficient at 297 K. In the present case, the disk radius relative variation is

6.6 · 10−5, corresponding to an absolute variation of 10−10 m. Among the advan-

tages of the time-resolved all-optical technique are the ability to measure relative

variations of the Cu nanodisks radius that can range up to 10−8, following α’s

dependence on temperature (5 · 10−9 K−1 at 4.2 K), and the possibility to take

advantage of time resolution to access the nanostructures thermodynamics in a

time domain ranging from fs to ns (τ ∼ 1 ns).

4.3 Simple analytic approach

An analytical description of the thermal problem is developed to evaluate the

temperature evolution in time and to access the relevant parameters taking place
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during the third step of the thermal process [see Section 4.2 for thermal steps

labeling]. The initial temperature of the system is assumed to be Tsub = 297 K

and the specific heat of the system, together with the thermal conductivity and

interface resistance are considered, for the time being and unless otherwise stated,

temperature independent. Further considerations are thus valid at Tsub only, but

they give anyway an indication of the dynamics induced by a laser pulse on a

nanosystem.

The 800 nm laser pulse penetration depth in copper is ΛCu = 13 nm and the

reflectance at normal incidence is RCu = 0.93; both are derived from copper’s op-

tical constants at 297 K (n1 = 0.454, n2 = 4.978, from Ref. [82]). Thus, the energy

transmitted in the Cu nanodisk is absorbed in half its volume and, due to its high

thermal conductivity kCu = 381 W/mK [83], the disk is isothermal after ∼ 2 ps.

On the other hand, the laser penetration depth in silicon is 8 µm and, considering

Si optical constants and specific heat, the substrate’s temperature increase after

the pump pulse absorption is negligible compared to the nanostructures. Under

these conditions, the thermal problem can be simply described beginning from a

metallic disk at a uniform initial temperature T0 in contact with a Si thermal bath

at constant temperature Tsub. For simplicity, the problem is solved for a Cu film

(h = 30 nm) deposited on a Si substrate, reducing the thermal evolution to a 1D

calculation in the spatial coordinate z and temporal t, as reported in Fig. 4.5.

A time t = 0 the pump pulse raises the film temperature to T0. Regarding the

boundary conditions, the film’s top surface (z = 0) is thermally insulated while

there is a heat flux at z = h regulated by the interface resistivity ρth. The problem

is formulated beginning from the diffusion equation [84]:

∂2T (z, t)

∂z2
=

ρ Cs

k

∂T (z, t)

∂t
for 0 < z < h and t > 0 , (4.5)

with Cs as the specific heat per unit volume, ρ the film density and k the thermal

conductivity.

k
∂T (z, t)

∂z
= 0 for z = 0 and t > 0
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Figure 4.5: Geometry of the Cu film deposited on a Si substrate, adopted in

the analytical solution of the 1D thermal evolution problem.

k
∂T (z, t)

∂z
+

1

ρth
(T (z, t) − Tsub) = 0 for z = h and t > 0 (4.6)

T = T0 for 0 ≤ z ≤ h and t = 0

The thermodynamics depends on ∆T = T−Tsub and, setting Tsub = 0, the solution

to the problem is found separating the variables:

T (z, t) = T0

∞∑

m=1

e−
κ

h2
ξ2
mt 2Bi

(ξ2
m + Bi2) + Bi

cos
(

ξm

h z
)

cos (ξm)
, (4.7)

where Bi = h
kρth

is the Biot number, κ = k
ρCs

is the thermal diffusivity of the

material and ξm are roots of the equation:

ξmtan (ξm) = Bi . (4.8)

The nanodisk temperature dynamics is readily accessible provided the Biot num-

ber Bi ≪ 1, meaning that the disk remains isothermal during the thermal relax-

ation process to the substrate. The roots ξm depend on Bi, and as seen in Fig. 4.6,
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Figure 4.6: Graphic solution of Eq. 4.8, for different values of the Biot number.

they are found from the intersection of G(ξ) = tan(ξ) and F (ξ) = Bi/ξ, where

Bi → 0 ⇒





ξ1 → 0

ξm → (m − 1) π m ≥ 2
. (4.9)

Eq. 4.7 shows the temperature dependence from a series of exponentials, and

writing their decaying time as

τm =
h2

κξ2
m

, (4.10)

we obtain, for Bi → 0,

τm

τ1
=

ξ2
1

ξ2
m

→
0

((m − 1) π)2
= 0 . (4.11)

Under this condition, terms with m ≥ 2 decay more rapidly with respect to the m =

1 term and are negligible, and the temperature space profile from approximates to

T (z, t) = T0 e−
κ

h2
ξ2

1
t 2Bi(

ξ2
1 + Bi2

)
+ Bi

cos
(

ξ1
h z
)

cos (ξ1)
, (4.12)

with

ξ1tan (ξ1) ∼= ξ2
1 = Bi . (4.13)
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Managing Eq. 4.12, we can definitely demonstrate that the condition Bi ≪ 1

is mandatory to access the thermal relaxation process of the system,

∆T

T
=

T (0, t) − T (h, t)

T (0, t)
= 1 − cos (ξ1) ∼= 1 −

(
1 −

ξ2
1

2
+ O

(
ξ4
1

))
∼=

Bi

2
. (4.14)

As shown, Bi ≪ 1 means a negligible thermal gradient between the top and bottom

surfaces of the metallic film (z axis), i.e. the nanostructures remain spatially

isothermal throughout the thermal relaxation process to the substrate. On the

contrary, a thermal gradient would carry a space dependence of the specific heat,

hence the impossibility of defining thermal properties of the nanosample as a whole.

Another point of view can be adopted to clarify the the physical meaning of

the Biot number, to this end is useful to compare the thermal conductivity k, as

the quantity indicating how effective heat diffusion is within the sample’s material,

to the interface thermal conductivity kint = h/ρth, a parameter characterizing the

effect of the interface and sample’s size on the heat transfer process. The Biot

number is then cast as:

Bi =
kint

k
. (4.15)

Bi ≪ 1 implies that heat conduction inside the sample occurs on a faster time

scale when compared to heat dissipation trough the interface with the thermal

bath, giving a negligible temperature gradient inside the sample and justifying

its state as isothermal during the relaxation process towards the substrate. This

calorimetric condition is satisfied for the h = 30 nm Cu film on silicon: with

kCu = 381 W/mK, ρth = 10−8 m2K/W, the Biot number is Bi = 7.87 · 10−3 and

estimating the thermal relaxation time we obtain τ1 = ρCshρth ∼ 1 ns.
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4.4 Full thermodynamical model

The physics entailed in the first two steps of the thermal evolution problem, de-

scribed in Section 4.2, is well modeled by the Two Temperature Model (2TM) [5]:

Cel(Tel)∂tTel = Pp(t) − Γ(Tel, Tph) + ~∇ · (kel(Tel)~∇Tel)

(4.16)

Cph(Tph)∂tTph = Γ(Tel, Tph) + ~∇ · (kph(Tph)~∇Tph)

k and C indicate the temperature thermal diffusion coefficient and specific heat per

unit volume, respectively, while the reference to the electrons (el) or Cu phonons

(ph) is indicated by the subscript. Γ is the electron-phonon coupling constant and

Pp is the profile of the pulsed power per unit volume absorbed by the sample.

The volumetric energy density absorbed by the sample is peaked within the

nanodisk, because of the difference in the optical penetration depth between Cu

and Si. This occurrence gives rise to the onset of an heat flux from the nanodisk to

the substrate, taking place on the nanosecond time scale (third step). The thermal

link translates in the following boundary conditions at the disk-substrate interface:

n̂ph · kph
~∇Tph + (Tph − TSi)/ρth(Tph) = 0

(4.17)

−n̂Si · kSi
~∇TpSi − (Tph − TSi)/ρth(Tph) = 0

n̂ph and n̂Si being the outward unit vector normal to the disk and Si boundary, re-

spectively. As a thermodynamical parameter accounting for microscopic processes

such as phonon dispersion mismatch between Cu and Si, the thermal boundary

resistivity ρth actually depends on the temperatures at both sides of the interface

via the phonons Bose-Einstein distributions [85, 86]. This dependence is seldom

considered, the two temperatures being almost the same, in most applications. In

the present work, and on certain time scales, it occurs that Tph exceeds TSi by

several tens of degrees Kelvin. For this reason, following the idea underlaying the
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formal treatment of the thermal boundary resistivity, the temperature dependence

is taken upon the hotter carrier temperature. The temperature within the Si sub-

strate is calculated via the Fourier heat transfer equation.

This three-step sequence repeats itself upon arrival of a new laser pulse, once

every 1 µs [87]. The steady-state temperature distribution, due to the pulses train,

is modeled following Ref. [1]. This distribution serves as the initial boundary con-

dition for the thermal dynamics following the arrival of a single pulse and is rather

constant within the first few microns region beneath the Si-nanodisk interface. In

the following the temperature in this region will be addressed as TSi, the tem-

perature calculated in a point positioned 5 nm beneath the disk-Si interface [see

Fig. 4.4]. The temperature-dependent specific heats and thermal conductivities

entering the equations have been taken from data available in the literature [88].

A fundamental issue is the temperature dependence of the electron-phonon

coupling which, in the high temperature limit, reads Γ = G(Tel − Tph). This ap-

proximation fails when the thermal dynamics spans the entire temperature range

from hundreds of degrees K to liquid Helium temperature. For instance, with Tsub

set at 4.2 K, Tel rises to ∼ 100 K within the pump pulse time width, relaxing back

to ∼ 4.2 K on the ns time scale. In order to properly account for the temperature

dependence over such a wide temperature range, the electron-phonon coupling is

cast as Γ = [I(Tel) − I(Tph)]/V where

I(T ) = 2πNcNEF

∫
∞

0
dωα2F (ω)(~ω)2nBE(ω, T ) , (4.18)

with Nc the number of cells in the sample, NEF
the electronic DOS at the

Fermi level, nBE the Bose-Einstein distribution and α2F the Eliashberg func-

tion [89], here calculated ab-initio within the frame of Density-Functional The-

ory [90]. Simulations results are reliable down to 0.6 THz, the electron-phonon

interaction calculation failing for longer phonon wavelengths. For lower frequencies

α2F = λ̃ω2/ω2
D [89, 91], ωD being the Debye frequency and λ̃ a fitting parame-

ter. The value λ̃ has been set as to have I(T ) matching the experimental data
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Figure 4.7: (a) Interaction term I(T )/V in log-log scale obtained from numer-

ical integration of Eq. 4.18. (b) Eliashberg function α2F obtained from ab-initio

Density Functional-based calculations.

reported at sub-K temperatures [78]. The coefficient G occurring in the expression

for the high temperature electron-phonon interaction, obtained from the linear fit

of I(T )/V for T ≥ ΘD, with ΘD the Debye temperature, is 8.43 · 1016 W/(m3K),

in good agreement with experimental values reported in the literature [92, 93]. Re-

sults for both I(T )/V and α2F are shown respectively in Figs. 4.7(a) and 4.7(b).

Attention is drawn on the nine orders of magnitude change of the interaction term

in the temperature range of interest for this work, i.e. from ambient temperature

to 1.5 K.
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The thermal boundary resistivity is well modeled by the Acoustic Mismatch

Model (AMM): ρth(T ) = AbdT
−3 for T ≤ T̃ = 30 K with Abd = 1.4·10−3 K4m2W−1

specific for a Cu-Si interface [94]. For higher temperatures, ρth is taken at the

constant value AbdT̃
−3, that is within the range of values reported for ambient

temperature. Nevertheless, to dissipate all doubts regarding the dependence of

our findings on the detailed value of T̃ , calculations have been performed with

values of T̃ spanning the range 20-50 K without affecting the physics.

4.5 Results and discussion

The focus of the present Chapter is on the relaxation dynamics relevant for nanocalorime-

try, therefore only the time scale from 100 ps to 10 ns will be discussed. Simula-

tions results at ambient and liquid Nitrogen temperatures are reported in Fig. 4.8.

In both cases the temperature within the nanodisk is well defined (Tel=Tph) and

remains homogeneous throughout its volume, thus assuring thermodynamical equi-

librium between electrons and phonons and the technique’s applicability to inves-

tigate the nanodisk thermal dynamics.

At Tsub=297.5 K the Si substrate acts as a thermal reservoir at constant tem-

perature, while the disk temperature time dependence is fitted by a single decaying

exponential with time constant τ1 = 1.1 ns [Fig. 4.8(a)]. The maximum relative

change of the nanodisk specific heat, ∆Cph/Cph=1.14·10−3, allows disregarding

its temperature dependence. These results suggest modeling the problem as an

isothermal film, with initial temperature 301 K, thermally linked with a reservoir

at TSi=298 K [see Section 4.3]. A value of the Biot number Bi = h/kphρth ∼ 10−3

guarantees the disk remains isothermal throughout the thermal relaxation process.

Under these circumstances the analytic solution for the disk temperature follows a

single exponential decay [84], with time constant τ = 1 ns, in agreement with the

fit to the numerical simulation, and the nanodisk specific heat is readily accessible
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Figure 4.8: Thermal relaxation dynamics results of the simulations for (a)

Tsub = 297.5 K and (b) Tsub = 77 K. Insets: (a) Locations within the sample were

the temperatures are calculated. (b) Difference between Tph and its asymptotic

value T0, in semi-log scale. Dashed red lines are a guide to the eye, showing

double exponential behavior.

as τ/hρth.

At Tsub = 77 K, the nanodisk temperature dynamics is well fitted by a dou-

ble exponential with decay times τ1 = 0.617 ns and τ2 = 6.286 ns, respectively

[Fig. 4.8(b)]. On the contrary to the previous case, TSi is not constant, due to the

diminishing of CSi with temperature. The physics can be rationalized as follows:

the isothermal nanodisk “feels” a substrate constant temperature on the sub-ps

time scale and it thermalizes with it with τ = 0.622 ns, as calculated on the basis

of the isothermal disk model adopted above. This interpretation is supported by

the agreement between the model-calculated τ and the value τ1 from numerical
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simulations . On the longer time scale the disk and the Si substrate portion in

close proximity to the disk-Si interface jointly thermalize with the rest of the Si

substrate.

The physics changes drastically for Tsub in the range of liquid He temperatures.

Simulations results for Tsub = 1.5 K are reported in Fig. 4.9. Tel and Tph decouple

at 13 K, 1 ns after the pump pulse arrival, with a maximum relative temperature

variation of 22%, for a time delay of 2.2 ns. A similar result, with relative temper-

ature variation of 6%, is found for Tsub = 4.2 K. From transport measurements in

mesoscopic structures the electron-phonon temperature decoupling occurs at sub-

K temperatures [78, 95], whereas for the present system our model foresees the

decoupling at temperatures about two orders of magnitude higher. Interestingly

here is to point out that the electron-phonon decoupling predicted in the present

work, cannot be observed by transport measurements because of the lack of time

resolution, thus rising a strong demand for ultrafast time-resolved nanocalorime-

try.

The physics entailed in the calculations is conveniently unfolded as follows.

The substrate temperature beneath the nanodisk reaches its asymptotic value of

2.2 K for a time delay of 1 ns. The system thermal dynamics is then well described

in a Two Dimensional (2D) phase space of coordinates (Tph, Tel) by the following

set of equations,

∂tTel = −Γ(Tel, Tph)/Cel(Tel)

(4.19)

∂tTph = −Ω(Tph)/Cph(Tph) + Γ(Tel, Tph)/Cph(Tph)

where the thermal flux per unit volume to the Si slab is taken into account by

Ω(Tph)=(Tph − 2.2K)/hρth(Tph). The thermal conductivities within the disk have

been omitted, the simulation results showing that the temperature distribution

within the disk is spatially uniform over the ns time scale, for both electrons

and phonons temperatures. Eq. 4.19 represent the velocity component in the 2D
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Figure 4.9: Thermal relaxation dynamics results of the simulation for Tsub =

1.5 K. Left axis: Tph and Tel. Right axis: relative temperature variation in

percentage. Inset: nanodisk trajectory in phase space for T < 13 K (arrows) and

Tel=Tph reference line (dashed) superimposed on the interaction landscape Γ.

phase space, the initial conditions being the temperatures (Tph, Tel) reached for

a 1 ns delay. The nanodisk trajectory in phase space is tangent to the velocity

field, (∂tTph, ∂tTel). The trajectory is the line Tph = Tel for time delays spanning

the ps to 1 ns range, the velocity vector pointing along this direction. At 13 K,

∂tTph > ∂tTel and the trajectory changes accordingly, hence Tph < Tel. The

velocity field is ruled by the interplay among Ω, the specific heats and Γ. The Γ

interaction term is large enough in the whereabouts of Tph = Tel to keep Tph and

Tel anchored down to 13 K, not so between 13 K and 2.2 K. The trajectory in

phase space for T < 13 K is reported, superposed on the landscape Γ, in the inset

of Fig. 4.9.

When compared with the results obtained for Cu nanodisks, the values for

Ω, Γ and the specific heats for several metals in the temperature range were the

decoupling is here shown to take place, suggest the present finding should occur

in a wider range of materials other than Cu. To this aim an approximate analytic

approach is here proposed, also serving as a valuable tool to further highlight
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the physical quantities ruling the electron-phonon temperature decoupling. In the

low temperature limit, T ≪ ΘD, well satisfied in the temperature range were the

decoupling occurs, the interaction term approximates to I(T ) = (Σ0/V )T 5, Σ0/V

being the sub-K electron-phonon coupling constant [78]. The Debye model for Cph

applies, and Eq. 4.19 reads

∂tTel = −C1

(
Σ0

V

)
1

NEF

(
T 5

el − T 5
ph

Tel

)
(4.20)

∂tTph = −C2
Θ3

D

nAbd
(Tph − TSi) + C3

(
Σ0

V

)
Θ3

D

n

(
T 5

el − T 5
ph

T 3
ph

)
(4.21)

with C1, C2 and C3 positive material-independent constants, and n the number of

ions per unit volume of the chosen metal. In the case of a Cu nanodisk, ∂tTph < 0

at all times, thus ∂tTph is ruled by the power density delivered from the nanodisk’s

phonons to the substrate rather than the power density input from the electron

to the phonon gas, hence the first term of the sum in Eq. 4.21 dominates over the

second term.

Let’s now consider Al nanodisks instead and compare it to the Cu nanodisks

case. With reference to Eq. 4.21, the following ratios are calculated,

(∂tTel)Al / (∂tTel)Cu ∼ 0.05

(
Θ3

D

nAbd

)

Al

/

(
Θ3

D

nAbd

)

Cu

∼ 2.37

(
Σ0

V

Θ3
D

n

)

Al

/

(
Σ0

V

Θ3
D

n

)

Cu

∼ 0.2

The first ratio signifies that Tel remains rather constant in the Al nanodisk as com-

pared to the Cu case, whereas the last two ratios imply that the main contribution

to ∂tTph, also for the Al case, is the power density flow from the phonon gas to the

Si substrate and that Tph relaxes to the substrate temperature two times faster

than in the case of Cu nanodisks. The electron-phonon temperature decoupling

is therefore expected to be more drastic in Al nanodisks as compared to the Cu
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case, the main role being played by ΘD and the material-dependent constants en-

tering Σ0.

4.6 Summary

In conclusion, by modeling ab-initio the thermal dynamics induced by ultrashort

laser pulses in nanoscale systems we show that the break-down of thermodynam-

ical equilibrium between electrons and phonons on the ns time scale takes place

at ∼ 10 K. This temperature is two order of magnitudes higher than that observed

in standard transport measurements. These findings set the limits of applicability

of ultrafast nanocalorimetry well above liquid He temperature, the electron-phonon

temperature decoupling preventing a proper definition of the temperature concept

of the nanosample as a whole. Finally, the present work, while making available a

proper tool for interpreting all-optical time-resolved nanocalorimetry experiments,

suggests a new route for investigating the physics of the electron-phonon decou-

pling where the sub-Kelvin temperature requirement is substituted by the ns time

resolution. If confirmed by the experiments, this discovery will bridge the fields of

ultrafast optics and cryogenic transport in mesoscopic systems, while setting the

investigation of the thermodynamics at the nanoscale into a new perspective.



Chapter 5

Thermomechanics of

hypersonic surface phononic

crystals

We present a theoretical framework allowing to properly investigate the ultrafast

optical generation of pseudosurface acoustic waves in a hypersonic surface phononic

crystal. Exploiting finite-elements analysis and putting at work the models devel-

oped in the previous Chapters, we follow step by step in the time domain the

initial impulsive heat-driven displacement launching pseudo-SAWs and evaluate

their lifetime. Our calculations are tested against time-resolved optical diffraction

measurements performed on the same composite systems [1].

51



5.1 Thermomechanics of hypersonic surface phononic crystals Pag. 52

5.1 Introduction

The use of ultrafast laser pulses (pulse duration ≤ 1 ps) to generate and detect

thermomechanical transients in matter opened the field of picoseconds ultrason-

ics [2]. In recent years, following the technological progress of transducers and

sources of coherent acoustic excitations in the gigahertz range, time-resolved re-

flectivity experiments performed on gratings of metallic nanometric stripes (2D

confined) on transparent (SiO2) or semitransparent (Si) substrates, evidenced os-

cillations in the hypersonic range [23, 40, 63, 74], triggering extensive studies on

the thermomechanical properties of solid state mesoscale systems.

As described in Chapter 3, the full mechanical problem has been addressed

beyond the simple perturbative approach, and pseudo-SAW solutions have been

identified and calculated. In a realistic physical scenario, there is no distinction

between the eigenmodes of nanostructures and SAWs, the solution of the elastic

equation being a pseudo-SAW partially localized on the nanostructures and radi-

ating energy into the bulk [45].

To gain further understanding of the detailed mechanisms behind the optical

generation of pseudosurface acoustic waves in hypersonic surface phononic crystals,

in this Chapter we combine the mechanical model addressed in Chapter 3 with the

thermal expansion model introduced in Chapter 4 to follow step by step in the time

domain the initial impulsive heat-driven displacement launching pseudo-SAWs and

to evaluate their lifetime. For simplicity, the simulations are first performed in a

two-dimensional (2D) geometry, reproducing a surface phononic crystals made of

periodic stripes. The thermomechanical time-dependent model is then extended

to the three-dimensional (3D) case, with the aim of reproducing the physics of a

metallic nanodisks on silicon phononic crystal geometry excited by a laser pulse,

and to benchmark our results against those from time-resolved infrared diffraction

experiments performed by Giannetti et al. on similar composite systems [1]. The

results give credence to our theoretical framework as a unique tool to understand



5.2 Thermomechanics of hypersonic surface phononic crystals Pag. 53

the detailed thermomechanics of hypersonic surface phononic crystals.

This Chapter is organized as follows: in Section 5.2 we introduce the time-

dependent numerical model for time-resolved diffraction measurements. Section 5.3

focuses on the first two steps of the thermomechanical evolution problem, dealing

with the impulsive heat-driven displacement. In Section 5.4 we aim at quanti-

tative evaluation of the pseudo-SAW coupling to bulk modes and the lifetime of

surface oscillations, further accurately testing the soundness of this thermomechan-

ical time-dependent model on its extension to the three-dimensional (3D) case in

Section 5.5.

5.2 Time-dependent model for time-resolved

diffraction measurements

In this framework, the surface phononic crystal under investigation has the same

characteristics of that in Section 3.2. It is an elastic continuum composed of a

periodic metallic grating deposited on a silicon substrate, as reported in Fig. 3.1.

We consider the general 2D geometry configuration where elastic isotropic nickel

stripes of chosen width d = 320 nm and height h = 50 nm are deposited on a

crystalline silicon substrate. The grating has period λ = 1 µm, ensuring pseudo-

SAWs in the hypersonic range. The time-dependent acoustic equation of motion

governing the displacement u(r, t) of the composite system is

∂j [cijmn (r) ∂num] = ρ (r) üi , (5.1)

where ρ (r) and cijmn (r) are the position-dependent mass density and elastic stiff-

ness tensor, respectively, the summation convention over repeated indices being

assumed.

Carrying on the investigation in the time domain, we solve the time-dependent

problem via a transient finite-elements method [69]. The simulation unit cell is
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Figure 5.1: Schematic diagram of the experimental diffraction technique imple-

mented to generate and detect thermomechanical transients in hypersonic surface

phononic crystals.

the one reported in Fig. 3.2(a), the model consisting of a 2D silicon rectangular

cell with a nickel stripe on top, and with the same periodic boundary conditions

described in Section 3.2. The material properties for the silicon substrate and

the nickel stripes, entering the expression of the elastic stiffness tensor, are listed

in Table 3.1. A fine quadratic-ordered mesh is chosen for accurate displacements

calculations, to account for the size discrepancy between the nanostructure and

the silicon cell.

For a clear understanding of the time-dependent acoustic dynamics, a de-

scription of the experimental diffraction technique adopted to optically excite and

detect pseudosurface acoustic waves in the GHz range is here reported. The basic
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Figure 5.2: Schematic diagram of the three timescales spanned by the thermo-

mechanical evolution problem.

idea is to use sub-ps laser pulses in a “percussion” approach (Ti:sapphire oscillator

with 120 fs pulse duration, 1 nJ per pulse, 800 nm central wavelength, 55 µm spa-

tial extension at FWHM and 1 MHz repetition rate), in which an intense pump

pulse focused on an area A of a solid surface impulsively delivers an energy Q

within the light penetration depth Λ, inducing a non-equilibrium local heating of

both electrons and lattice on the ps timescale. The local temperature increase

∆T is coupled to a sudden lattice expansion through the thermal expansion co-

efficient α. The photoinduced thermoelastic stress is able to launch strain pulses

η(y, t) propagating away from the excited surface along the direction y at the lon-

gitudinal sound velocity v. The propagation of strain pulses is followed by means

of a second delayed probe pulse. A schematic diagram of the technique is reported

in Fig. 5.1, and described in Refs. [1, 80].

The impulsive expansion of the periodic nanostructures mechanically cou-

pled to the substrate, triggers a spatially modulated stress on the silicon surface

and launches a pseudo-SAW of wavelength λ matching the nanostripes period-

icity. As described in Section 4.3 and presented schematically in Fig. 5.2, after

excitation by a single pump pulse, the thermomechanical evolution problem spans

three timescales. In the first step, the laser short pulse heats the electron gas of
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the metallic stripes (subpicosecond timescale). In the second step, the hot elec-

tron gas thermalizes with the lattice (picosecond timescale). In the third step,

two occurrences take place: (a) a pseudo-SAW is launched in the system, finally

transferring mechanical energy to the Si bulk, and (b) the stripes thermalize with

the silicon substrate (sub-nanosecond and nanosecond timescale). This three-steps

sequence repeats itself upon arrival of a new laser pulse.

5.3 Impulsive heat-driven displacement

Focusing on the first two steps of the thermomechanical evolution problem, we

consider the laser energy density absorbed by the nanostructures and by the sub-

strate, and the specific heat of both Ni and Si. From the simulation of the laser

impulsive heating, we are able to follow in time the electron Tel and phonon Tph

temperatures of the metallic nanostructure, and estimate that within 10 ps the

electron gas has effectively thermalized with the lattice and the temperature of

the nanostripes is homogeneously increased by ∼ 8 K, whereas the substrate tem-

perature TSi is essentially unvaried due to the different penetration depth of the

800 nm radiation, as observed in Section 4.3.

The calculated Tel = Tph temperature profile at t = 10 ps is reported in

Fig. 5.3(a). The impulsive temperature mismatch ∆T = Tph − TSi = 8 K triggers

the non-equilibrium expansion of the nanostripes width d, ruled by Eq. 4.4,

δd

d
= α∗∆T ∼ 2 · 10−5 , (5.2)

α∗ being the effective thermal expansion coefficient of the Ni-Si system, with a

periodicity given by the stripes’ repeat distance. The total displacement profile of

the expanded nanostripe at t = 10 ps is presented in Fig. 5.3(b).

The analysis of the initial displacement profile, and of the subsequent mechan-

ical time evolution, points out that the initial thermal expansion mainly launches
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Figure 5.3: (a) Calculated Tel = Tph temperature profile of the metallic nanos-

tripe at t = 10 ps. (b) Total displacement profile of the expanded nanostripe

calculated at t = 10 ps.

pseudosurface acoustic modes. Reporting on the temporal evolution of the strain

pulse launched by the photoinduced thermoelastic stress, we are able to follow step

by step the pseudo-SAW dynamics and observe the propagation of the displace-

ment away from the excited surface. As shown in Fig. 5.4, on the sub-nanosecond

time scale the spatially modulated stress on the silicon surface launches a pseudo-

SAW of wavelength λ matching the nanostripes periodicity. The oscillation is

mainly localized on the substrate’s top surface, and it has a displacement com-

ponent evolving into the bulk of the system, verifying the pseudo-SAW definition

given in Ref. [45]. Following the dynamics in the pictured sequence, in the first two

frames we observe the birth process of the pseudosurface oscillation. In the subse-

quent frames and more accurately in Fig. 5.5 with a wider landscape observation,

we are able to evaluate its localization and we actually distinguish the wavefront

of the elastic energy radiation component propagating to the bottom of the silicon

cell while the pseudo-SAW, still surface-localized, damps in time.



5.4 Thermomechanics of hypersonic surface phononic crystals Pag. 58

2

0

T
otal displacem

ent  (x10
-12 m

)
y (µm)

100

99

7

0

T
otal displacem

ent  (x10
-12 m

)
2

0

T
otal displacem

ent  (x10
-12 m

)
2

0

T
otal displacem

ent  (x10
-12 m

)

2

0

T
otal displacem

ent  (x10
-12 m

)

2

0

T
otal displacem

ent  (x10
-12 m

)

10 ps 50 ps

100 ps 200 ps

300 ps 600 ps

Figure 5.4: Close sequence of the pseudo-SAW generation and short range

temporal evolution. The profile deformation and arrows correspond to the dis-

placement field. The color scales refer to the absolute total displacement.

5.4 Coupling to bulk modes and lifetime

We now aim at the quantitative evaluation of the pseudo-SAW coupling to bulk

modes and the lifetime of surface oscillations. In Chapter 3, we have solved the
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Figure 5.5: Landscape view of the pseudo-SAW generation and long range

temporal evolution. The profile deformation and arrows correspond to the dis-

placement field. The color scales refer to the absolute total displacement.

acoustic eigenvalue problem [Eq. 3.2]

∇ · (c∇ui) = −ρω2
ui , (5.3)

and shown the results of the calculations performed considering the real dimensions

of the samples. The analysis of the large number of calculated eigenmodes was
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performed exploiting the ratio between the elastic energy content within the 1 µm

top portion of the unit cell and within the entire cell, reported as a function

of frequency. This quantity, named SAW-likeness coefficient, accounts for the

different surface energy content of the calculated eigenmodes [45]. Two Lorentzian

curves emerge as the main contribution to pseudo-SAW solutions [see Fig. 3.3]. In

particular, the low-energy one is related to sin-like symmetry solutions, whereas

the high-energy one has cos-like symmetry, the energy difference between the two

modes being the phononic gap opening due to the periodicity of the system. We

have shown that the bulk mechanical energy content of the cos-like pseudo-SAW

eigenmode properly accounts for the energy radiated into the bulk [see Fig. 3.7].

In this frame, among all the solutions of the acoustic eigenvalue problem, the

thermally triggered initial displacement u (r, t = 0), significantly overlaps to the

superposition of cos-like pseudo-SAW eigenmodes,

u (r, 0) =
∑

i

Aiui (r) , (5.4)

with Ai significantly different from zero only for cos-like eigenmodes. As qualita-

tively observed in Fig. 5.6, the superposition of the displacement of the first two

symmetric pseudo-SAWs u1H (r) (fundamental) and u2H (r) (second harmonic),

solutions of the acoustic eigenvalue problem, well reproduces the initial system

expansion u (r, 0).

With the aim of evaluating quantitatively the lifetime of the pseudo-SAW cou-

pled to bulk modes, we take inspiration from quantum mechanics writing the gen-

eral expression of the projection of the time-dependent displacement on the set of

acoustic eigenvectors {ui}, solutions of the acoustic eigenvalue problem [Eq. 5.3],

|u (r, t)〉 =
∑

i

〈ui|u (r, t)〉 |ui〉 . (5.5)

The time-dependent projection coefficient Wi = 〈ui|u (r, t)〉 = cie
iωit tells us how

the displacement at time t is reproduced by the solution ui and it is the quantity

we employ to spot out which, among the eigenmodes of the composite system, are
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Figure 5.6: (a) Total displacement profile of the expanded nanostripe calculated

at t = 10 ps. (b) Normalized total displacement of the fundamental (Left -

ν1H = 4.61 GHz) and second harmonic (Right - ν2H = 8.66 GHz) cos-like pseudo-

SAW solutions of the acoustic eigenvalue problem.

mainly excited by the impulsive thermal expansion of the nanostructures at t = 0.

In this frame, the evaluation of the projection coefficients requires a normal-

ization of the eigenvalues displacement in terms of the total energy dU absorbed

by the nanostructure in the impulsive thermal expansion process. An approximate

evaluation follows from the formula dU = CV V ∆T , that with ∆T = 8 K accounts

for the impulsive temperature mismatch triggering the non-equilibrium expansion

of the nanostripe, and where CV = 2.2 · 106 J/(m3K) is the volume V dependent

specific heat. Taking the length of the nanostripe equal to the laser spot diam-

eter, we obtain dU = 15.5 pJ/pulse. Writing the expression for dU in terms of
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Figure 5.7: Projection (2D) of the initial thermal expansion displacement on the

eigenmodes of the composite system, with cos-like (red circles) and sin-like (black

circles) displacement symmetry. The calculated curves with cos-like displacement

symmetry are fitted with the Fano function described in Eq. 5.9 (blue line).

the volume density ρ, the eigenfrequency ω and the displacement u(ω), as for an

harmonic oscillator, we obtain

dU = ω2

∫

V
ρ (Au (ω))2 dV , (5.6)

and we determine the normalized eigenvalue displacement in terms of the normal-

ization coefficient Ai,

ũi = Aiui =

√
dU

ω2
i

∫
V ρu2 (ωi) dV

ui , (5.7)

where the set of eigenvectors {ui} is normalized to 1. Setting our initial condition

of impulsive thermal expansion, we thus rewrite for t = 0 the projection expression

of Eq. 5.5,

|u (r, 0)〉 =
∑

i

〈ũi|u (r, 0)〉 |ũi〉 , (5.8)

and plot in Fig. 5.7 the projection coefficients ci = |〈ũi|u (r, 0)〉| versus the eigen-
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Table 5.1: Calculated cos-like pseudo-SAW frequencies outlined in the projec-

tion of the initial nanostripes’ impulsive displacement on the eigenmodes of the

phononic crystal [see Fig. 5.7].

Stripes d = 320 nm ν1H ν2H ν3H

ν (GHz) 4.61 8.56 12.36

τ (ns) 2.53 2.35 ∼ 0.65

modes frequency νi. As reported in Table 5.1, it is clear that the more weighting

modes in the reconstruction of the initial displacement are actually the cos-like

pseudo-SAWs, both the fundamental (1H) solution at ν1H = 4.61 GHz and the

second harmonic (2H) at ν2H = 8.56 GHz, identified by means of the SAW-likeness

coefficient. A third weak contribution at ν3H = 12.36 GHz is ascribed to the third

harmonic (3H) pseudosurface wave, the displayed larger broadening being a sig-

nature of its stronger coupling to bulk modes [see Section 3.5]. We remark that

the numerical simulation’s accuracy and reliability, influencing the quality of the

2H projection and of projections on higher harmonics, are severely limited by the

mesh refinement and consequently by the calculation power of the workstation

running the finite-elements analysis software.

A Fano lineshape is ascribed to both the 1H and 2H distributions stand-

ing out in the projection plot. The Fano profile is the general fingerprint of an

absorption lineshape occurring when one or more discrete levels interact with a

continuum of states, both connected to a ground state [96]. The remarkable fea-

ture is the occurrence of peculiar asymmetric and window lineshapes, generated by

the configuration interaction (mixing) between the discrete and continuum states.

Picturing this definition on the interpretation of our results, as signature of the

interaction between the discrete silicon surface wave eigenmode and the contin-

uum of bulk modes, induced in the composite system by the surface stress at the
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nanostripe/substrate interface, we adopt the Fano function to fit our asymmetric

data sets,

F (ν) = F0 + A

(
q Γ

2 + (ν − ν0)
2
)

(ν − ν0)
2 +

(
Γ
2

)2 , (5.9)

where the profile index q carries information on the configuration interaction and

Γ is the line broadening parameter; ν0 and F0 are the fit x and y offsets, respec-

tively, and A is a constant. In order to clarify the meaning of Eq. 5.9, we recall

that in the limit case of q → ∞, that is when only the discrete state is connected

to the ground state, the above equation describes a symmetric Lorentzian curve

with broadening parameter Γ [97].

Thus, a direct evaluation of the linewidth γ of the pseudosurface oscillations

is drawn from the curve fit broadening parameter Γ and it is reported in Fig. 5.7.

The oscillation lifetimes are reported in Table 5.1. The value for τ1H is validated

in terms of its consistency with results for comparable composite systems reported

in Ref. [23]. An approximated evaluation of the lifetime of the 3H pseudo-SAW

in terms of the same Fano curve fitting procedure returns τ3H ∼ 650 ps, giving a

hint of its highly damped dynamics.

These results confirm the validity of our interpretation, unambiguously demon-

strating that the impulsive heating of the periodic metallic nanostructures launches

collective modes mainly localized on the surface of the silicon substrate, which are

identified as pseudosurface acoustic waves.

5.5 Extension to the 3D case

The thermomechanical time-dependent model is here extended to the 3D case, with

the aim of reproducing the physics of a surface phononic crystal geometry, con-

sisting of metallic nanodisks on silicon, excited by a laser pulse, and to benchmark

our results against those from time-resolved diffraction measurements performed
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by Giannetti et al. on similar composite systems [1]. In this sense, the measure-

ments give the direct evidence of the detection of surface oscillations launched in

a surface-based phononic crystal by means of ultrashort laser pulses, and the the-

oretical frame here developed aims to explain such physical evidence in terms of a

process of excitation of pseudo-SAWs by means of an impulsive thermal expansion

of the periodic nanostructures.

We assume the system to be an elastic continuum composed of an array of

periodic metallic nanodisks deposited on a silicon substrate. In Fig. 5.8(a), we

consider the general configuration where an elastic isotropic nickel nanodisk of

diameter d and height h = 50 nm is deposited on a crystalline silicon substrate

cell, with the canonical periodic boundary conditions set on the sides to reproduce

the entire phononic crystal. In this case the height of the silicon cell is reduced to

20 µm, a value exclusively tailored to deal with the higher numerical complexity of

a finite elements analysis in three dimensions, still maintaining a sufficient density

of eigenstates for the composite system [see Section 3.2]. The array has periodicity

λ = 1 µm, thus ensuring pseudo-SAWs in the hypersonic range. Calculations are

performed for d = 320 nm [as in Fig. 5.8(a)] and d = 785 nm, thus matching the

dimensions of the samples experimentally investigated in Ref. [1].

As for the 2D case, by evaluating the laser energy density absorbed respec-

tively by the nanostructures and the substrate, and the specific heat of both Ni and

Si, we can estimate that within 10 ps, the temperature of the metallic nanodisks

is homogeneously increased by ∆T ∼ 8 K, whereas the substrate temperature is

essentially unvaried due to the different penetration depth of the 800 nm radiation.

The impulsive temperature mismatch ∆T triggers a non-equilibrium expansion of

the nanostructures governed by Eq. 5.2. The symmetric total displacement profile

of the expanded nanodisk at t = 10 ps is presented in Fig. 5.8(b).

The developed theoretical frame involving the projection of the initial im-

pulsive displacement on the calculated eigenmodes of the system is well suited

in this 3D case to describe the pseudosurface acoustic waves generation process
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Figure 5.8: (a) Simulation cell geometry: general configuration of an elastic

isotropic nickel nanodisk of diameter d and height h = 50 nm deposited on a

crystalline anisotropic silicon substrate cell of height 20 µm. (b) Total displace-

ment profile of the expanded nanodisk calculated at t = 10 ps.

and to evaluate the lifetime of these oscillations. On this basis, we solve the

elastic eigenvalue problem depicted in Eq. 5.3 via finite element calculations and

individuate the launched pseudo-SAW solutions among the eigenmodes of the sys-

tem by means of the SAW-likeness coefficient. At the same time, considering the

nanodisks’ symmetric initial displacement, we discriminate between sin-like and

cos-like pseudo-SAWs in terms of their contribution to the initial impulsive ther-

mal expansion in the projection at t = 10 ps, practically showing that only the

cos-like oscillations (even symmetry) are launched by the impulsive expansion.

Following Eq. 5.8, these evidences are clear in the plots of the projection coeffi-

cients ci = |〈ũi|u (r, 0)〉| for the 3D problem, reported versus the eigenfrequencies

νi in Fig. 5.9.

More in details, in the non-trivial analysis of the projection plot of Fig. 5.9(a)

for the phononic crystal configuration with nanodisks of diameter d = 320 nm, we

gather complete information on the mechanical response of the composite system
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Figure 5.9: Projections (3D) of the initial thermal expansion displacement on

the eigenmodes of the composite system, with cos-like (red circles) and sin-like

(black circles) displacement symmetry. Here reported are the results of simu-

lations performed for phononic crystals with nanodisk diameter of, respectively,

(a) d = 320 nm and (b) d = 785 nm. The calculated curves with cos-like dis-

placement symmetry are fitted with the Fano function described in Eq. 5.9 (blue

line).
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Figure 5.10: Normalized total displacement of (a) the fundamental ν1H =

4.8 GHz cos-like pseudo-SAW and (b) the ν = 6.52 GHz cos-like surface mode,

solutions of the 3D acoustic eigenvalue problem for the d = 320 nm phononic

crystal configuration.

to the impulsive thermal excitation of the surface nanostructures. We identify the

fundamental excited pseudo-SAW at the frequency ν1H = 4.8 GHz as the more

weighting contribution in the projection to the system oscillation dynamics. The

line profile of the fundamental pseudo-SAW has a clear Fano appearance, high-

lighting the interaction between the discrete silicon surface wave eigenmode and

the continuum of bulk modes, induced in the composite system by the surface

stress at the nanostructure/substrate interface. We make use of Eq. 5.9 to fit the

1H line profile and calculate its broadening parameter for an immediate evaluation

of the curve’s linewidth γ1H = 0.406 ns−1. As reported in Table 5.2, we note from

the plot that an additional surface component at 6.52 GHz enters this 3D projec-

tion as a weak contributing term to the initial nanodisks expansion. The analysis

of the eigenmodes displacement profiles, reported in Fig. 5.10, shows similarities

between the fundamental pseudo-SAW and the symmetric surface oscillation of

the 6.52 GHz eigenmode, but on the other hand it unambiguously evidences a
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Table 5.2: Calculated cos-like pseudo-SAW frequencies outlined in the projec-

tion of the initial nanodisks’ impulsive displacement on the eigenmodes of the

phononic crystals [see Fig. 5.9].

Disks d = 320 nm ν1H ν2H ν3H

ν (GHz) 4.8 6.52 (8.69) 10.65

τ (ns) 2.46 0.425

Disks d = 785 nm ν1H ν2H

ν (GHz) 4.55 6.36 6.97 7.68

τ (ns) 1.7 (∼ 6.0) 1.11

non-negligible bulk-like component, thus leading to its classification as bulk mode

with a secondary surface-like contribution.

Surprisingly, in the study of higher frequency features, we are not able to

clearly individuate a second harmonic pseudosurface oscillation signature in the

projection plot. A profile centered at 10.65 GHz is observed, with a lower but

non-negligible contribution to the initial impulsive thermal expansion, and due to

its large broadening and surface displacement profile it is addressed, similarly to

the 2D case, as the third harmonic (3H) highly damped pseudosurface feature.

The 3H component’s larger linewidth γ3H = 2.35 ns−1 (from the Fano curve fit) is

in agreement with the stronger surface confinement for higher harmonics and the

greater mechanical damping in terms of elastic energy radiation to bulk modes, as

described in Refs. [23, 1].

Accordingly to the discussion and results for the 2D case, we expect that

the nanodisks’ impulsive expansion would excite a 2H pseudo-SAW, but the result

of the simulations denies us. To find an answer to this issue we take in consid-

eration the (ux, uy, uz) components of the eigenvalue displacement ui and sepa-

rately project the initial displacement u (r, 0) on the single component, as shown
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Figure 5.11: Projections (Left) of the initial nanodisk’s displacement on the

(a) ux, uy, and (b) uz eigenvalues’ displacement components for the d = 320 nm

phononic crystal configuration, with the corresponding 1H and 2H displacements

reported (Right).

in Fig. 5.11. Pointing our attention to the higher harmonics frequency range, in

Fig. 5.11(b) we can confirm that the projection on the uz transversal displacement

component is approximately null, while on the other hand, in Fig. 5.11(a) the pro-

jections on the ux and uy in-plane longitudinal components are totally similar to
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the 2D projection reported in Fig. 5.7, with neath 2H contributions at 8.69 GHz.

The fact that such contributions are not present in the general projection [Eq. 5.8]

is explained by their projection profiles, which are equal (for symmetry) but op-

posite in sign, leading to a zero in their summation. Physically, this translates in

terms of the 2H displacement profile in having the ux and uy components equal

in modulus but opposite in phase, as we see in Fig. 5.11(a), thus not matching

the totally symmetric initial surface nanodisk expansion condition [see Fig. 5.8(b)]

and explaining why the impulsive displacement at t = 10 ps does not excite a 2H

pseudosurface acoustic wave.

Our calculations are benchmarked against time-resolved optical diffraction

measurements performed on the same composite systems [1]. The experimental re-

sults are here reported in Fig. 5.12, in a wavelet analysis framework. By definition,

the wavelet directly shows the frequency content of the measured diffracted signal

∆R/R within time windows, thus carrying information on both measured surface

oscillations’ frequency components and lifetimes. The theoretical outcome repro-

duces the main experimental features. In the case of d = 320 nm in Fig. 5.12(a),

the calculated pseudo-SAW frequencies match the diffracted signal’s frequency

components at zero delay. This is achieved introducing a correction factor in

the modulus of the elastic stiffness tensor cijmn, entering the acoustic equation

of motion [Eq. 5.1]. This correction is due to the increased strain originated by

both the periodic nanostructures mass loading on the silicon substrate and the

lattice mismatch at the nickel/silicon interface. This correction factor is taken

into account in terms of an increased effective elastic stiffness tensor, as formerly

discussed in Ref. [98]. The need to adopt a greater correction factor for the larger

nanodisk configuration is a further confirmation of the validity of our thermo-

mechanical model. The numerically evaluated fundamental pseudosurface wave

lifetime τ1H = 1/γ1H = 2.46 ns well fits with the wavelet displayed damping of

the signal’s 4.8 GHz frequency component. In the same way, the expected shorter

lifetime τ3H = 1/γ3H = 425 ± 160 ps of the 3H pseudo-SAW satisfactorily enters
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Figure 5.12: 3D Wavelet analysis of the time-resolved diffraction measurements.

Here reported (inverted color scale) are the experimental results collected for

phononic crystals with nanodisk diameter of, respectively, (a) d = 320 nm and

(b) d = 785 nm. The calculated pseudo-SAW frequencies are evidenced in blue.

(considering the prominent numerical error) the shorter time range of the cor-

responding 250 ps experimental counterpart, observable as a small signature in

the wavelet plot. Moreover, the additional bulk mode with a secondary surface

component observed in the projection at ν = 6.52 GHz, even if not directly visi-

ble because covered by the stronger 1H signal, still has a clear fingerprint in the
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4.55 GHz cos-like pseudo-SAW, and the (b) ν = 6.36 GHz, (c) ν = 6.97 GHz

cos-like surface modes, solutions of the 3D acoustic eigenvalue problem for the

d = 785 nm phononic crystal configuration.

wavelet plot in terms of a frequency beating visible in the signal on longer delays,

suggesting that its contribution to the surface oscillation is effectively translated

in a variation of the diffracted signal, thus being optically detected.

The additional weak surface term also appears when performing the same

analysis on the thermomechanical simulations results for the d = 785 nm phononic

crystal configuration. As summarized in Table 5.2, in the projections plot of

Fig. 5.9(b), the 1H and 2H excited pseudo-SAW are found at ν1H = 4.55 GHz

and ν2H = 7.68 GHz, respectively, and the third contribution is distinguishable at

6.36 GHz. Comparing these evidences with the experimental results reported in

Fig. 5.12(b), the wavelet unambiguously displays the signature of the 1H and 2H

(here observable) pseudosurface oscillations at zero delay. The eigenfrequencies

are correctly downshifted, accounting for the increased mass loading of the system

due to the larger filling fraction, as discussed in Section 3.3. Also in this case, the

surface oscillation at 6.36 GHz, not directly visible in the wavelet because covered

by the stronger 1H signal, still sets up a clear frequency beating, with the funda-

mental pseudo-SAW, visible in the signal on longer delays. Its contribution to the
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surface oscillation is thus effectively optically detected. A further confirmation is

given by the analysis of the surface displacement of this eigenmode, as reported in

Figs. 5.13(a) and 5.13(b), showing a profile very similar to the fundamental’s, with

a stronger oscillation confinement in the nanostructure and a weak energy radia-

tion component in the bulk. Concerning the pseudosurface oscillations’ lifetimes

calculated by means of the Fano profile curve fitting procedure, if the second har-

monic τ2H = 1/γ2H = 1.11 ns overestimates the reported experimental result, the

fundamental τ1H = 1/γ1H = 1.7 ns fits with some approximations to the measured

damping displayed in the wavelet. We finally point out that the small broadening

of the 6.36 GHz surface component, leading to a not physical 6.0± 1.5 ns lifetime,

is corrupted by the lack of calculated solutions in that frequency range, and that

the isolated feature in the projection at 6.97 GHz corresponds to a bulk modes

with a non-negligible surface oscillation component, clearly observable in terms of

the surface displacement analysis reported in Fig. 5.13(c), but hard to individuate

in the measured signal.

5.6 Summary

In conclusion, presented in this Chapter is a theoretical framework allowing to

properly investigate the thermomechanics of hypersonic surface phononic crystals

excited by ultrafast laser pulses. Exploiting finite-elements analysis, we followed

step by step in the time domain the initial impulsive heat-driven displacement. The

3D thermomechanical time-dependent model demonstrates without doubts that

hypersonic pseudosurface acoustic waves are optically excited. The lifetimes of

the generated pseudo-SAWs are evaluated. The benchmark of the outcomes of our

calculations, against experimental results from time-resolved infrared diffraction

measurements, verifies that the theoretical framework well reproduces the main

experimental features. These results give credence to the full thermomechanical
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model as a unique tool to understand the physics of hypersonic surface phononic

crystals.



Chapter 6

Conclusions

In this thesis, we presented a theoretical framework allowing to investigate the ther-

momechanics of hypersonic phononic crystals triggered by ultrafast laser pulses.

Analyzing the detailed mechanisms behind the optical generation of pseudosurface

acoustic waves, we addressed the full thermomechanical problem and identified

pseudo-SAW solutions [45]. In a realistic physical scenario, there is no distinction

between the eigenmodes of nanostructures and SAWs, the solution of the elastic

equation being a pseudo-SAW partially localized on the nanostructures and radi-

ating energy into the bulk. Pursuing a strategy that can be applied to any surface

phononic crystal, we investigated pseudo-SAW line shapes, gap opening and me-

chanical energy scattering beyond a perturbative approach.

We made use of the outlined theoretical framework in the case of a hypersonic

surface phononic crystal made of periodic nickel stripe on a silicon substrate, in-

vestigating the pseudosurface acoustic wave frequency gap over the entire filling

fraction range, starting from the case where the periodic nanostructures act as a

perturbation, to finally reach the substrate full coverage. A preliminary under-

standing of how the construction parameters affect the frequency gap has been

achieved. We showed that the pseudo-SAW frequency gap results from a combi-

nation of geometry {p, h} and mass loading {m, ρ} factors, the two affecting the

76
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pseudo-SAW frequencies in opposite ways. A trade-off between p and m is thus

necessary for tailoring the pseudo-SAW frequencies or frequency gap for the appli-

cation at hand. The mechanical energy spatial distribution of pseudo-SAW as a

function of the filling fraction has been studied, potentially allowing to tailor the

device’s parameters in order to minimize the energy content scattered out of the

desired modes.

Exploiting finite-elements analysis to study the impulsive generation and life-

time of pseudo-SAWs in these nanostructured composite systems, we modeled ab-

initio the thermal expansion dynamics induced by ultrashort laser pulses. In the

ultrafast nanocalorimetry perspective, we reported the break-down of thermody-

namical equilibrium between electrons and phonons on the ns time scale at ∼ 10 K,

at a temperature two order of magnitudes higher than that observed in standard

transport measurements. These findings set the limits of applicability of ultrafast

nanocalorimetry well above liquid He temperature, the electron-phonon tempera-

ture decoupling preventing a proper definition of the temperature concept of the

nanosample as a whole. In this sense, the present work, while making available a

proper tool for interpreting all-optical time-resolved nanocalorimetry experiments,

suggests a new route for investigating the physics of the electron-phonon decou-

pling where the sub-Kelvin temperature requirement is substituted by the ns time

resolution.

Combining the initial condition for the generation of surface acoustic oscilla-

tions, given by the system’s thermal expansion dynamics, with the developed full

mechanical model, we were able to follow step by step in the time domain the ini-

tial impulsive heat-driven displacement launching pseudo-SAWs and to evaluate

their lifetime. The results demonstrated without doubts that hypersonic pseu-

dosurface acoustic waves are optically excited in surface phononic crystals by the

nanostructures’ impulsive thermal expansion. As a successful benchmark, the sim-

ulations outcomes were compared, in terms of a wavelet analysis framework, with

time-resolved optical diffraction measurements performed on the same composite
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systems by Giannetti et al. [1]. This evidence gives credence to our theoreti-

cal framework as a unique tool to understand the detailed thermomechanics of

hypersonic phononic crystals, opening to the possibility of optically control the

excitation of hypersonic pseudo-SAWs and thermal gradients in arrays of metallic

nanostructures on substrate.
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