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1. Introduction

In many applications coherent light is required at wavelength not available

with laser systems, that’s why optical converters are widespread devices.

Standard converters have an extremely high efficiency (close to 100%) but

they are very expensive and they need careful alignment of the optical set-up

to work successfully.

In recent years many works have demonstrated that polycrystalline ma-

terials exhibit second harmonic converters behavior, even if the conversion

efficiency is much lower than in the case of the standard non-linear crystals.

Some ceramic glasses has shown optical converters features ([3, 2]), for

example the potassium niobium silicate ceramic glasses (KNS), studied in

[1]. They are polycrystalline transparent materials that consist in a glassy

matrix, where nano-crystalline elements are disposed randomly.

The size and the number of the domains determine the overall second

harmonic generation efficiency of the ceramic glass.

The glasses can be grounded to powder in order to establish the value of

the domain size which involves the maximum conversion efficiency ([2, 5]).
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This size is the coherence length of the material. Hence the glasses can be

produced with coherence length sized domains.

Our first aim was to analyze the optical properties of four ceramic glasses

(NaNS, LiKNS, KNaNS and KNS) , in order to compare their second har-

monic generation (SHG) efficiency with the samples analyzed in [1].

However the main goal of this work is determine the coherence length of

KNS. We had four powder samples with different grain size; we wanted to

find the second harmonic intensity trend in function of the grain size.



2. Characterization of samples

In this work we analyzed samples produced by the staff of the Department

of Materials and Production Engineering at the University of Naples.

2.1 Non-linearity of polycrystalline materials

The non-linear behavior of amorphous or nano-crystalized ceramic materials

is the subject of some works in recent years ([2, 5, 4, 3]).

The potassium niobium silicate (KNS) glasses are polycrystalline mate-

rials in which second harmonic generation process has been observed ([8]).

KNS glasses were studied both amorphous and nanostructured. The amor-

phous nature was revealed by x-ray diffraction analysis; the nanostructured

glasses were obtained with an appropriate heat treatment near Tg (glass so-

lidification temperature). The nanostructuring of KNS is in the scale of

5− 20nm and it was revealed by small-angle neutron scattering. In contrast

to initial KNS glasses, which were as-quenched (non subjected to heat treat-

ment), nanostructured glasses exhibit Second Harmonic Generation (SHG)
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activity, as it is reported in [8]. The following step was the study of SHG in

glasses subjected to different heat treatments, in which both the temperature

and the duration of the annealing process changed. This is the topic of [1].

The SHG seems to be due to the nanocrystals that compose the material,

the efficiency of the process is related to the size of the nanocrystallities. The

authors of [2] concluded that the SHG in this material originates from the

abrupt changes in optical susceptibility at the interface between the glass

and crystal, together with the higher-order nonlinear response.

Nowadays there isn’t a physical model that allows the interpretation of

SHG in KNS glasses, even if a first attempt was done ([8]). The main obstacle

consists in writing the polarization vector for this kind of materials, because

the form of their dielectric tensor isn’t known.

The powders obtained from ceramic materials were analyzed in some

works ([2, 5]). It was observed that the efficiency of the second harmonic

generation process depends on the grain size.

2.2 Production of samples

We used two kind of samples: ceramic glasses and ceramic powder.

We analyzed four ceramic glasses:

• NaNS as-quenched;

• LiKNS as-quenched;

• KNaNS as-quenched;

• KNS 23-27-50 subject to annealing process of 2h at 680◦C.
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The KNS sample was previously studied in [1], it resulted to be the most

performing sample among all the KNS ceramic glasses analyzed in that work.

The three as-quenched samples are composed by nanocrystals precipitate

on a glassy matrix, with the melt-quench technique well described in [10, 9].

These glasses are pale yellow transparent.

With the same technique four KNS ceramic glasses (23-27-50) were pro-

duced by the staff of the Department of Materials and Production Engineer-

ing at the University of Naples. The resulting glass samples were ground into

powder with an agate mortar and pestled and sieved into four distinct grain

size (d) ranges:

• d < 32µm;

• 32 < d < 45µm;

• 45 < d < 90µm;

• 90 < d < 125µm;
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2.3 Theoretical introduction

In this section we give only some basic concepts about the second harmonic

generation process in non conducting media, we don’t use the quantum theory

of nonlinear optics.

2.3.1 Mechanical approach to second harmonic generation

A mechanical model suitable to describe the interaction between light and

matter is the Lorentz oscillator; it is a classical model, but it can forecast

results that are compatible with experimental data.

The main idea of this approach is considering the electrons in a dielectric

isotropic medium like a damped oscillator, driven by an external drive force.

We now seek the behavior of an electron subject to a confinement poten-

tial, containing higher-order non-quadratic terms. We shall suppose that the

confinement potential U(x) is one dimensional, so

U(x) =
1

2
mω2

0x
2 +

1

3
mDx3 (2.1)

where ω0 is the natural oscillation frequency of the oscillator in the linear

regime, m is the electron mass and D is the non-linear coefficient. The system

is subjected to a dipolar electric driving force:

F = qE cos ωt =
qE

2m
(eiωt + c.c.) (2.2)

where c.c. designates the complex conjugate.
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The motion of the particle x(t) is described by the differential equation:

ẍ + γẋ + ω2
0x + Dx2 =

qE

2m
(eiωt + c.c.) (2.3)

where γ is the friction coefficient. As the motion of the particle must be

periodic (with frequency ω and relative harmonics) we can make an harmonic

analysis of x(t) by writing it as:

x(t) =
1

2
(x0 + x1e

iωt + x2e
i2ωt + ... + c.c.) (2.4)

We will assume that x0 = 0. Substituting 2.4 in 2.3 we obtain:

−ω2

2
(x1e

iωt+c.c.)−2ω2(x2e
i2ωt+c.c.)+

iωγ

2
(x1e

iωt+c.c.)+iωγ(x2e
i2ωt+c.c.)

+
ω2

0

2
(x1e

iωt + c.c.) +
ω2

0

2
(x2e

i2ωt + c.c.) +
D

4
(x2

1e
2iωt + 2x1x

∗
2e
−iωt

+ x1x
∗
1 + x2x

∗
2 + 2x1x2e

3iωt + x2
2e

4iωt + c.c.) =
qE

2m
(eiωt + c.c.) (2.5)

We will first consider the linear response, so the terms in eiωt and neglect

those in D. Hence we find:

x1 =
qE

m

1

(ω2
0 − ω2) + iωγ

≈ qE

2ωm

1

(ω0 − ω) + iγ/2
(2.6)

for ω ≈ ω0. The motion x1(t) = 1
2
x1e

iωt + c.c. gives rise to a linear

polarization in the medium:

P1(t) = Nqx1(t) =
Nq

2
(x1e

iωt + c.c.) (2.7)

where N is the volumetric density of the systems which interact with the

wave.
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It is useful remind the relation between polarization and susceptibility:

P = ε0χE(t) ≈ ε0

2
(χ(ω)Eeiωt + χ(2ω)E2ei2ωt + c.c.) (2.8)

where the RHS is the expansion of the vector P around E = 0. Thus we

can express the polarization in the medium as follows:

P1(t) =
ε0

2
(χ

(ω)
1 Eeiωt + c.c.) (2.9)

which leads to:

χ
(ω)
1 =

Nq2

2ωmε0

1

(ω0 − ω) + iγ/2
(2.10)

From (2.8), we define the non-linear second-order susceptibility as:

P2(t) =
ε0

2
(χ

(2ω)
2 E2ei2ωt + c.c.) =

Nq

2
(x2e

i2ωt + c.c.) (2.11)

The term in x2 is generated by the non-linear quadratic term Dx2 in (2.3).

An expression for it can be obtained through (2.5) by identifying terms in

e2iωt:

x2(−4ω2 + 2iωγ + ω2
0) = −1

2
Dx2

1 (2.12)

In this last equation it’s clear that the term in x2
1 drives the 2ω motion

of the electron. Employing (2.6) in (2.12), we get:

x2 = −q2D

2m2

1

[(ω2
0 − ω2) + iωγ]2[(ω2

0 − 4ω2) + 2iωγ]
E2

≈ − q2D

24m2ω3

1

[(ω0 − ω) + iγ/2]2[(ω0 − 2ω) + (2/3)iγ]
E2

(2.13)
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After substituting this last equation in (2.11) we can write the second-

order non-linear susceptibility:

χ
(2ω)
2 = − Nq3D

24ε0m2ω3

1

[(ω0 − ω) + iγ/2]2[(ω0 − 2ω) + (2/3)iγ]
(2.14)

There is an observation on (2.14) that is worthy of mention: the system

is doubly resonant, there is a resonance at ω = ω0 and at ω = 2ω0. Besides

when comparing (2.10) and (2.14), we can see that this model predicts the

following relationship between linear and non-linear optical susceptibilities:

χ
(2ω)
2

(χ
(ω)
1 )2χ

(2ω)
1 ε2

0

=
mD

2N2q3
= δ(2ω) (2.15)

The parameter δ(2ω) is known as the Miller parameter and it should be

very similar for all materials, and actually it is. In fact δ(2ω) ≈ 3 − 8×109SI.

Finally, we have to underline that the quantity χ2 is a tensor. If the fun-

damental wave has components (Ex, Ey, Ez), the second harmonic wave will

have components (Px, Py, Pz) which in the most general case, will be deter-

mined by all quadratic combinations between the components Ex, Ey, and Ez,

so:




Px

Py

PZ


 = ε0χ

(2ω)
2




E2
x

E2
y

E2
z

EyEz

EzEx

ExEy




(2.16)
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The properties of the tensor χ
(2ω)
2 depend strongly on the symmetries of

a given crystal.

2.3.2 Electromagnetic approach to non-linear optical interaction

The anharmonic displacement of electrons in a non-linear material subject

to excitation by an electromagnetic wave leads to light emission at frequency

2ω, 3ω, and following harmonics. The calculation of the optical emission due

to these non-linear source terms is taken into account using the Maxwell’s

equation. In the absence of free charges (ρ = 0) and conducting currents

(j = 0), the Maxwell’s equations are:

∇ · E = 0, ∇ · B = 0

∇× E = − ∂

∂t
B, ∇×B = µ0

∂

∂t
D = µ0

∂

∂t
(ε0E + P )

(2.17)

where P is the polarization vector and is the sum of the linear polarization

Pl given by (2.9) or Pl = ε0E(n2
op− 1), with n2

op = 1+χL, and the non-linear

polarization Pnl as given in (2.11). We also make the assumption that the

media we consider aren’t magnetic. From equations (2.17) we can derive the

propagation equation, that is:

∇2E −
(nop

c

) ∂2

∂t2
E = µ0

∂2

∂t2
Pnl (2.18)

We will consider three electromagnetic waves with frequencies ω1, ω2, ω3,

which propagate within a non-linear crystal. We shall suppose that the

system is one dimensional and the propagation occur only along the z-axis.
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We can write these three waves as envelope functions in the following

way:

E(ω)(z, t) =
1

2
[Ei(z)ei(ωit−kiz) + c.c.] i = 1, 2, 3. (2.19)

We have to put in evidence that the envelope function approximation

(SVEA) establishes that the amplitude variations Ei(z) are small in com-

parison to the scale of the involved wavelengths λi = 2π/ki. This means

that:

∣∣∣∣
dEi

dz
ki

∣∣∣∣ À
d2Ei

dz2
(2.20)

We recall the dispersion relation

ωi = ki
c

ni

(2.21)

that can be derived from the solution of the Maxwell’s linear equations

(without the source term we have in (2.18)).

The three waves interact in the crystal through the effect of non-linear

polarization: we shall suppose that the non-linear polarization vector is ori-

ented along the y-axis and we will only consider its norm Pnl.

Among all the possible frequency mixings, we are interested only in

the sum frequency process, because second harmonic generation is a par-

ticular case of this phenomenon. The non-linear source term has terms in

Eω1(z, t)Eω2(z, t) which will generate terms of angular frequency

ω3 = ω1 + ω2.
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The non-linear source term corresponding to the sum frequency mecha-

nism is obtained from (2.11):

Pnl(z, t) =
ε0χ2

2
[E1(z)E2(z)ei(ω1+ω2)t−(k3−k2)z + c.c.] (2.22)

Even if in this notation we write χ2, it must be underlined that the

susceptibility is different for every frequency mixing process, i.e.

χ2ω
2 6= χω3−ω2

2 .

We have to substitute (2.22) as the source term in the propagation equa-

tion (2.18). We shall calculate separately the first term of this equation:

∂2

∂z2
Eω3(z, t) =

1

2
{ d2

dz2
[E3(z)ei(ω3t−k3z)] + c.c}

=
1

2

[(
d2

dz2
E3 − 2ik3

d

dz
E3 − k2

3E3

)
ei(ω3t−k3z) + c.c.

]

≈ 1

2

[(
−2ik3

d

dz
E3 − k2

3E3

)
ei(ω3t−k3z) + c.c.

]
(2.23)

where we used the approximation (2.20). The propagation equation ,

(2.18), may therefore be written as:

− 1

2

(
2ik3

d

dz
E3 + k2

3E3

)
ei(ω3t−k3z) + c.c.

= −
(ω3n3

c

) (
E3

2
ei(ω3t−k3z) + c.c.

)
− ε0µ0ω

2
3

2
(χ2E1E2e

i(ω3t+(k1−k2)z))

(2.24)

As ω3 = k3c/n3 this equation can be simplified, we can rewrite it considering

only the spatial dependence:

ik3
d

dz
E3e

−ik3z + c.c. =
µ0ε0ω

2
3

2
[χ2E1E2e

−i(k1−k2)z + c.c.] (2.25)
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Thus we can describe the variation of the complex amplitude E3(z) in

the material, as a function of the amplitude of the two source-waves E1(z)

and E2(z). In the sum frequency process the amplitudes E1(z), E2(z), and

E3(z) are related by the following differential equation:

d

dz
E3 = −i

ω3

2n3c
χ2E1E2e

i∆kz (2.26)

where ∆k = k3 − k1 − k2, it is called phase mismatch.

2.3.3 Electromagnetic approach to second harmonic generation

In this section we describe the particular case where ω = ω1 = ω2 and ω3 =

2ω. This situation corresponds to the optical second harmonic generation.

Equation (2.26) becomes:

d

dz
Eω = −i

ω

2nωc
χ2E2ωE∗

ωe−i∆kz

d

dz
E2ω = −i

ω

n2ωc
χ2E

2
ωei∆kz

(2.27)

The first equation of (2.27) comes from the generalized equation for the

difference frequency generation, whose derivation can be found in [6].

The origin of the ∆k term is that the source field P2ω is synchronous with

the field Eω (which generates it): the propagation speed of the Eω field is

c/nω, while the field E2ω propagates with speed c/n2ω.
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We suppose that the non-linear conversion efficiency is weak enough to

reasonably consider Eω(z) constant over the interaction volume; so

Eω(z) = E0. The second equation of (2.27) can be easily integrated along

the interaction path (the non-linear crystal length from 0 to L) to find:

E2ω(L) = −i
ω

n2ωc
χ2E

2
0

ei∆kL − 1

i∆k
= −i

ω

n2ωc
χ2E

2
0 e

i∆kL
2

e
i∆kL

2 − e
−i∆kL

2

i∆k
(2.28)

multiplying and dividing by L/2 we get

E2ω(L) = −i
ω

n2ωc
χ2E

2
0 e

i∆kL
2

L

2

e
i∆kL

2 − e
−i∆kL

2

i∆kL
2

= −i
ω

n2ωc
χ2E

2
0 e

i∆kL
2 L

sin
(

∆kL
2

)
∆kL

2

= −i
ω

n2ωc
χ2E

2
0 e

i∆kL
2 L sinh

(
∆kL

2

)

(2.29)

We are more interested in the optical power converted into second har-

monic radiation, which relates to the amplitude E2ω according to:

I2ω =
1

2Z0

n2ω|E2ω(L)|2 (2.30)

where Z0 is the vacuum impedance (Z0 = (µ0/ε0)
1/2 = 377Ω). The second

harmonic frequency conversion efficiency is then:

I2ω

Iω

=
2Z0Iω

n2
ωn2ω

[ω

c
χ2L

]2

sinh

(
∆kL

2

)2

=
8π2Z0Iω

n2
ωn2ω

[
L

λ
χ2

]2

sinh

(
∆kL

2

)2

(2.31)

This last equation shows clearly the main role played by the phase mis-

match ∆k. If this term is null, the conversion efficiency is proportional
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quadratically to the interaction length L (because sinh (0) = 1), and there

is a permanent exchange of energy between the fundamental wave and the

second harmonic wave along the interaction length. If ∆k isn’t zero, the

efficiency depends on sinh (∆kL/2), which oscillates periodically along the

interaction path. In this situation, the energy periodically cycles between

both waves during propagation in the crystal. The distance Lc at the end of

which the energy transfer is at a maximum value is given by ∆kLc = π, so:

Lc =
λ0

4(n2ω − nω)
(2.32)

where λ0 is the vacuum wavelength of the fundamental radiation. The

quantity Lc is called coherence length. Thus the best way to perform high con-

version efficiency second harmonic generation process consists in the phase-

matching condition.

2.3.4 Phase-matching

The phase-matching condition may be seen in atomic scale as the construc-

tive interference of the second harmonic waves generated by different atoms

(figure 2.1a).

The condition of phase matching (k2ω − 2kω = 0) requires that the two

waves, the fundamental and the second harmonic, should travel with the

same velocity. But this doesn’t occur because of the normal dispersion, in

fact the speed of a wave is

v =
ω

k
=

c

n
(2.33)
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Figure 2.1: Second harmonic generation in different materials

The most common approach is to make use of birefringent crystal: in

such a crystal the polarization of the light end its direction of propagation

influence the speed of the wave. Hence for some special choice of polarization

and direction, phase-matching can be achieved. A complete treatment on the

phase-matching obtained with birefringence can be found in [6].

This approach can’t be applied in isotropic crystals, because they lack

of optical birefringence: in successive layers defined by the coherence length

the second harmonic waves generated have opposite phases, which means
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destructive interference (figure 2.1b). In a sample with an even number

of coherence-length layers, the second harmonic signal vanishes; for an odd

number of layers it is only as strong as if the total length of the sample were

equal to the coherence length, because only the last layer contributes to the

total signal.

The solution can be represented by microstructured samples made up of

layers of coherence length width with alternating crystal orientation. The

result is that the alternating sign of the non-linear interaction makes the in-

terference of waves generated by successive layers globally constructive. This

situation is called quasi-phase-matching. However the technology required to

produce such a material is undeveloped and expensive.

The possibility that random structures might be appropriate had already

been noted ([12, 13]). Recently it has been considered ([5]) the random

quasi-phase-matching in polycrystalline disordered materials. The samples

analyzed in [5] contain a large number of single-crystal domain with random

orientations, random shapes and random sizes. The frequency-converted

waves generated by different domain achieve random phases and interfere

neither constructively nor destructively. The total intensity of the generated

wave is then the sum of the intensities arising from individual domains; it

grows linearly with the number of domains or the length of the sample (figures

(2.1c) and (2.2)).

Quasi-phase-matching is worth to be treated a bit more deeply. The idea

behind this approach is to modulate spatially the optical non-linearity with

some period (Γ) to supply a quasi-wavevector K = 2π/Γ.
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Figure 2.2: Different phase-matching situation: (a) The transfer of energy

between the waves oscillates with a period of 2Lc leading to a small conver-

sion efficiency. (b) In a totally disordered material (powder, gas, liquid) each

particles behave independently, scattering the non-linearly generated fields

in an incoherent way. (c) In quasi-phase-matched materials the orientation

of the crystal is rotated every Lc. The energy transfer Enl adds up construc-

tively with the propagating distance (Enl ∝ N , where N is the number of

grains). (d) In polycrystalline materials there is a coherent growth of the

non-linear generated fields according to Enl ∝
√

N.

Thus the quasi-phase-matching condition consists in providing a quasi-

wavevector such that k2ω − 2kω = K.

The spatial modulation for χ2(z) can be written as:

χ2(z) = χ2f(z) (2.34)

where f(z) is aperiodic function which oscillates between −1 and +1.
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We have to introduce this change of the susceptibility in (2.27), that is

the equation that rules the evolution of the second harmonic field E2ω; so we

obtain:

d

dz
Eω = −i

ωχ2

n2ωc
E2

ωf(z)ei∆kz (2.35)

The converted field strength E2ω at the end of a propagation distance L

is then:

E2ω(L) = −i
ωχ2

n2ωc
E2

ω

∫ L

0

f(z)ei∆kzdz (2.36)

Expanding f(z) as a Fourier series with period Γ:

f(z) =
∑

n

fne−in(2π/Γ)z (2.37)

Equation (2.38) then gives:

E2ω(L) = −i
ωχ2

n2ωc
E2

ω

∑
n

fn

∫ L

0

ei(∆kz−2nπ/Γ)dz (2.38)

in this last equation is clear the role played by the periodic modulation

of susceptibility. If an integer n exists such that:

k2ω − kω =
2nπ

Γ
(2.39)

from (2.38) it follows that:

E2ω(L) = −i
ω(fnχ2)L

n2ωc
E2

ω (2.40)
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Comparing (2.39) with the expression for the coherence length (2.32), we

see that the modulation periods are multiples of Lc:

Γ = 2nLc (2.41)

Expression (2.40) shows that the medium behaves like it is phase-matched,

but with an effective non-linear susceptibility given by:

χeff
2 = |fn|χ2 (2.42)

where fn is the Fourier series term for the periodic function f(z) given

by:

fn =
1

Γ

∫ Γ

0

f(z)ein(2π/Γ)zdz (2.43)

If f(z) is a sinusoidal function (f(z) = sin (2πz/Γ)), then fn = f1 = 1/2

and χeff
2 = χ2/2.

Looking at figure (2.2), it is clear that a more realistic approach involves

modulating the non-linear susceptibility by periodically reversing the direc-

tion of the non-linearity so that f(z) = +1 between 0 and Γ/2, and f(z) = +1

between Γ/2 and Γ.

Integration of (2.43) leads to:

χeff
2 =

2

π
χ2 (2.44)

The direction of the non-linearity is inverted before the cyclic energy

transfer begins from the second harmonic wave to the fundamental wave.



3. Experimental set-up

We have performed measures on KNS ceramic powder samples by using two

different set-ups: the reflection mode set-up and the transmission one. We

have used a mode-locked Ti:Sapphire laser, with a wavelength output at

λ = 790 nm and pulse duration τ = 120 fs.

3.1 Reflection mode set-up

The set-up we have realized to perform measures in reflection is shown in

figure (3.1).

The light travels across the system formed by the half-wave plate and the

polarizer: we weren’t interested in a particular state of polarization, we used

this system just because it let us change the power of incident radiation on

the samples, by rotating the half-wave plate. We used a motorized mount to

turn this device, in order to get many possible orientations of the half-wave

plate.
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Figure 3.1: Reflection mode set-up

The optical window reflects only the 4% of the laser light towards a pho-

todiode, used to have a signal reference. We shielded the photodiode with

some neutral filters, to avoid the saturation of the detector and to keep it in

the linear response regime.

The beam transmitted goes trough the M4 dichroic mirror (HR@400,

HT@800) then is reflected by the M5 metallic mirror into the microscope 20X

objective. The metallic mirror is a silver one, it can reflects any wavelength

between 400nm− 2µm.

Light enters the 20X Microscope to be focused on the KNS powder pressed

on an optical window. We decided to use this devices as a support for our

sample because of its transparency to any wavelength light.
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The optical window was put on a piezoelectric actuator, supported by a

system of two perpendicular translators and another controller: this mount

let us to control horizontal translations, vertical translations and the tilt of

the actuator. That’s a main point of the setup: thanks to this fine regulations

we were able to maximize the second harmonic intensity produced by the

sample.

The second harmonic and the fundamental radiation goes back towards

the M5 mirror, the metallic one, that can reflect both the wavelengths. The

second harmonic is then reflected by the M4 mirror (HR@400, HT@800),

while the fundamental is transmitted. The second harmonic impinges the

phototube, by traveling across two blue bandpass filters (BG18) and an in-

terferometric one.

The phototube was connected by a BNC coaxial cable to the oscilloscope

(Tektronix TDS 3054).

The first operation we have done is the alignment of the set-up; by paying

attention especially to the microscope. In this step we replaced the piezo-

electric actuator with a metallic mirror, in order to have a reflected beam of

fundamental radiation: we considered the alignment accomplished when the

phototube saturated because of this beam. In fact the M4 mirror was sup-

posed to transmit quite all the fundamental radiation, so the phototube could

detect just a few of the pump also because of the BG18 and interferometric

filters.

First we had to be sure that this set-up was able to detect a second

harmonic signal; that’s why we performed a non-linearity measure on a BBO

crystal.
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Non-linearity

We put the BBO at the working distance of the microscope, then we

changed the intensity of the incident radiation by rotating the half-wave

plate, and we measured the SHG signal. We repeated the same measure for

one of our samples (KNS 23-27-50, d < 32). In both cases our goal was

to find an evidence for the non-linear behavior of the samples. We plotted

the second harmonic signal VS the incident intensity: we expected that a

parabola would have fitted well the experimental data, as it happened.

Then we analyzed the second harmonic produced by three different ce-

ramic glasses.

SHG (from ceramic glasses)

This measure was performed by using the reflection set-up except for one

device: we replaced the piezoelectric actuator with a metallic mirror. We also

have made a comparison with the data about KNS ceramic glasses analyzed

in [1].

Then we performed the main measure of this work: we studied SHG from

our samples, in order to make a determination of the coherence length.

Coherence length (from KNS powder)

We wanted to study the SHG from the different samples. We have carried

this measure with the following technique: we put the powder on an optical

window, the we pressed it with another optical window which was identical

to the first. Then we removed the upper one and performed the measure.
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3.1.1 Laser system

The laser-system is composed by three main elements: a diode-pumped laser

(Coherent Verdi V10), a Ti:Sapphire oscillator (Mira 900) and the cavity

dumper (APE Pulse Switch).

The laser Coherent Verdi V10 is the optical pump of the oscillator, it

emits green radiation @532nm and has a maximum power of 10W , but we

used it at 4W .

The femtosecond Ti:Sa oscillator Coherent Mira 900 is a mode-locked

laser, which is capable of generating short laser pulses (120fs, @790nm) at

a pulse repetition rate of 76MHz.

The Pulse Switch cavity dumper is used to reduce the repetition rate of

the Mira 900 and to raise the pulse energy by several times: we had a pulse

repetition rate of 54.3MHz, the maximum output power obtained for each

pulse was 30mW . We got this value by setting the division rate at 100, when

we had to perform measure we often set it at 50, in order to have more power.

The output beam has a spatial profile gaussian in shape. We were inter-

ested in the size of the laser beam spot, that’s why we performed a knife-edge

measurement. It consisted in ”slicing” the laser light with a metallic blade

and detecting the transmitted intensity. We fixed the blade to the piezo-

electric actuator (see section 3.1.6), which was mounted on the system of

translators (see figure 3.1).

We moved this device with the translators. We registered the position

of the blade and the light transmitted, which was detected by the Thorlabs

DET 210 photodiode (see section 3.1.2), so we built the spatial beam profile

(figure 3.2).
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Figure 3.2: Beam profile
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Figure 3.3: Beam profile fit with gaussian function

The beam profile of the spot is shown clearly in figure 3.3, which reports

the derivative of the knife-edge profile vs the knife position. We fitted the

differential intensity with a gaussian function whose FWHM is the width of

our laser beam spot. We obtained the value D = (3.3± 0.5)mm.
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This result is very useful in order to know the spot size of the laser beam

when it is focused by different devices (see section 3.1.5 and 3.2.1).

Another important feature of the laser beam is the energy content of each

pulse; it is given as:

Ep = (Power meter signal in W)/Rr (3.1)

where Rr is the repetition rate of the laser. The peak intensity can be

obtained from the following relation

Ip =
Ep

A · τ (3.2)

where τ is the life-time of each pulse and A is the area on the sample.

We evaluated the area of the beam in the focus of a microscope (reflection

set-up) and an achromatic doublet (transmission set-up).

3.1.2 Photodiode

The reference photodiode we used was a Thorlabs DET210 one. It is a silicon

PIN photodiode featured by a very little active area (0.8mm2), which is the

only part of the detector that interacts with radiation. The damage threshold

is 100mW in continuous wave (CW) and 0.5J/cm2 for 10ns pulsed wave.

The maximum of the photodiode’s response curve is about our fundamen-

tal wavelength (≈ 800nm), the responsivity (Re(λ))is about 0.4 A/W in this

spectral region (see figure (3.5)). The responsivity is a useful data to give

an estimation of the photocurrent expected, which is converted in voltage

(in order to view it on an oscilloscope) by adding an external load resistance

(Rload).
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Figure 3.4: Structure of Thorlabs DET210 photodiode

Figure 3.5: Spectral response of Thorlabs DET210 photodiode

The output voltage is

Vo = Re(λ) · P ·Rload

where P stays for the power of the incoming radiation on the photodiode.

Besides we are able to value the bandwidth (fbw) and the rise-time re-

sponse (tr), that depend on the capacitance of the DET210 (Cj) and on the

load resistance; in fact the relationship that holds is
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fbw =
1

2πCjRload

tr =
0.35

fbw

We wired the photodiode to the oscilloscope with a BNC coaxial cable.

First we set the input impedance of the oscilloscope on 50Ω, so we could see

that the light pulse was detected by the photodiode. Later we change the

impedance to the value of 1MΩ, with the aim to slow the time response of

the photodiode: in fact this device can be thought as a RC circuit with a

relaxation time τ = RC. Our intent to increase the value of τ is due to the

need for an integration of the signal over a longer time range; if we set 50Ω

as impedance we can’t see any signal except for the narrow time window of

the pulse. So we could see a continuous signal on the oscilloscope, which was

the result of an integration over the peaked signals corresponding to many

incoming light pulses on the photodiode.

We had to screen the photodiode with some neutral filters, to avoid its

saturation and to keep it in his linear response regime.

3.1.3 Photomultiplier (Phototube)

A photomultiplier is a device which converts light into a measurable electric

current. It is so sensitive that it can be used to perform photon counting

measure, because it can detect a single photon. We used an Hamamatsu

R7518P with a C6270 socket supply.

Figure (3.6) shows a schematic diagram of a photomultiplier.
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Figure 3.6: Schematic representation of a photomultiplier

It consists of a cathode made of photosensitive material followed by an

electron collection system, an electron multiplier section (or dynode string)

and finally an anode from which the final signal can be taken. All parts are

housed in an evacuated glass tube.

When the photomultiplier is in function, a voltage is applied to the cath-

ode, dynodes and anode such a potential ”ladder” is set up along the length

of the cathode-dynode-anode structure. When an incident photon interacts

with the photocathode, an electron is emitted via photoelectric effect. Be-

cause of the applied voltage the electron is then directed and accelerated

towards the first dynode, where it transfers some of its energy to the dyn-

ode’s electrons. This involves emission of secondary electrons, which are

accelerated towards the next dynode where more electrons are released and

further are accelerated.
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Figure 3.7: Electron multiplier section of a phototube

As a result an electron cascade is created down the dynode string, as can

be seen in figure (3.7). This cascade is collected to give a current which can

be amplified and analyzed.

Photomultipliers may be operated in continuous mode (i.e. under a con-

stant illumination) or in pulsed mode. In either mode the current at the

output will be directly proportional to the number of incident photons. The

photomultiplier we used in pulse mode is able to detect even ultra-short

pulses: in fact we had 120fs pulses, while the time response of the R7158P

is of the order of ns.

We have to take in consideration some features of a phototube, to de-

scribe it properly. We have seen that the photocathode converts incident

light into a current of electrons by the photoelectric effect. That’s why the

photocathode usually is made of semiconductors or multi-alkali compounds

(for example GaAs or InGaAs), in fact these materials are featured by a low
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work function. As it’s well known, photoelectric effect has a threshold; i.e.

a certain minimum frequency of the incoming radiation is required to make

it take place. Above this threshold, however, the photoemission probability

is less than 100%: the efficiency for photoelectric conversion depends on the

frequency of the incoming light and on the structure of the material.

This spectral response is expressed by the quantum efficiency η(λ)

η(λ) =
number of photoelectrons released

number of incident photons on cathode(λ)

where λ is the wavelength of the incident light. An equivalent quantity

is the cathode radiant sensitivity, which is defined as

S(λ) =
Ik

P (λ)

where Ik is the photoelectric emission current and P (λ) is the incoming

radiant power. S(λ) is usually given in units of ampere/watts and it can be

related to the quantum efficiency by

S(λ) =
eλη(λ)

hc

where e is the electron charge and c is the light’s speed.

Figure (3.8) represents the quantum efficiency and the cathode radiant

sensitive in function of the wavelength. It must be noted that the peak of

the quantum efficiency is at 400nm, which is the wavelength of the second

harmonic signal we had to detect.

The photocurrent is amplified by the dynodes, which are secondary emis-

sion electrodes.
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Figure 3.8: Hamamatsu R7518P spectral response

The gain of each dynode is known as secondary emission factor, δ. Dyn-

odes are made of CsSb, because it has a very high secondary emission factor

and a low thermionic emission (i.e. low noise).

The overall gain of a photomultiplier depends on the number of dynodes

and on the secondary emission factor δ, which is a function of the energy of

the incident electrons.
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This energy is obviously related to the potential difference Vd between

the dynodes, so we can write

δ = KVd

where K is a proportionality constant. If we assume that Vd has the same

value for every dynode, the overall gain can be expressed as

G = δn = (KVd)
n (3.3)

where n is the number of the dynodes. From (3.3) it is possible to calculate

the number of dynodes n, required to get a certain gain G with a minimum

supply voltage Vs

Vs = nVd =
nG1/n

K

Minimizing we find,

dVs

dn
=

1

G1/n
− n

K

G1/n

n2
ln G = 0, n = ln G

This is a useful result, because operating at minimum voltage could be

desirable from the point of view of noise.

Another important relation is the variation in gain with respect to supply

voltage. From (3.3) we calculate

dG

G
= n

dVd

Vd

= n
dVs

Vs
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which means that to keep a gain stability of 1%, the voltage supply must

be regulated to within 0.1%.

Figure 3.9: Hamamatsu R7518P gain

The dependance of the gain from the supply voltage for our phototube is

shown in figure (3.9).

The device was connected to the oscilloscope by a BNC coaxial cable. We

set the input impedance of the oscilloscope on 1MΩ, so we could read the

current generated by the phototube as a voltage. To minimize the noise’s

influence, we averaged the signal over a temporal window. Laboratory’s lights

could damage permanently the dynodes, so it was fundamental to work in a

dark environment.
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We screened the photodiode with two BG18 and an interferometric filters,

in order to cut the fundamental frequency and transmit only the second

harmonic.

3.1.4 Filters

We used three kinds of filters: bandpass filters, attenuation filters and inter-

ferometric filter. We put two BG18 bandpass filters before the phototube to

cut the fundamental radiation, so the signal detected by the photomultiplier

should have been only second harmonic.

Figure 3.10: BG18 transmission

The transmittance of BG18 filters is represented in fig 3.10: it should be

noticed that for the wavelength λ = 790 nm (the one we had to cut) the

BG18’s transmittance is 9 · 10−5, meanwhile for λ = 400 nm (the one we

wanted to detect) T is 0.62. The ratio of these two values of transmittance is
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about 105, that’s why we used this filter. The transmittance’s peak is about

@500 nm.

We used also the attenuation filters NG5 and NG11 to screen the reference

photodiode, to avoid its saturation.

Figure 3.11: NG11 and NG5 transmission

Figure 3.11 shows the transmittance of NG5 and NG11 filters: the former

transmits 0.50 at @790 nm, the latter 0.69.

We used also an interferometric filter at @400 nm, put on the window of

the phototube’s photocathode to cut further the fundamental radiation.

3.1.5 Microscope

We used a Newport M-20X microscope to focus the laser beam on the sample

and then, once the sample had produced second harmonic, to collect the

reflected signal. The working distance of this device is 1.7 mm.
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By using the gaussian beams propagation theory, it is possible to calculate

the depth of focus and the spot diameter.

Figure 3.12: Gaussian beam’s propagation

Look at the fig 3.12: the spot size is a function of z (which is the propa-

gation direction), ω(z). The minimum of this function ω0 is called waist.

For a beam of wavelength λ at a distance z along the beam from the

beam waist, the variation of the spot size is given by

ω(z) = ω0

√
1 +

z

z0

where the origin of the z-axis is defined, without loss of generality, to

coincide with the beam waist, and where

z0 =
πω2

0

λ
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is called the Rayleigh range. So at a distance from the waist equal to the

Rayleigh range z0, the width ω of the beam is

ω(±z0) = ω0

√
2

The distance between these two points is called the confocal parameter

or depth of focus of the beam:

b = 2z0 = 2
πω2

0

λ

The spot diameter in the focus is expressed as

d0 = 2ω0 =
2λf

πD
(3.4)

where f is the focal length of the microscope and D is the spot diameter

before the microscope. We obtained the value D = (3.3 ± 0.3)mm with

knife-edge technique described in section 3.1.1.

By applying the equation (3.4) we found that in the focus of the mi-

croscope the spot diameter should be d0 = (1.5 ± 0.5)µm; we performed a

knife-edge measurement in the focus of the microscope to verify this result.

We wanted to detect a spot size in the order of micron, so we had to modify

the measure technique. We moved the blade by moving piezoelectric actu-

ator controlled by its interface, that let us to realize displacements in 1µm

steps.
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According to the equation 3.1.5 the focus depth of our system is b =

2z0 = (5± 1)µm.
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Figure 3.13: Beam profile

We reported the spatial beam profile in figure (3.13).
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Figure 3.14: Beam profile fit with gaussian function
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The graph that shows the derivative of the knife-edge profile vs the knife

position is figure (3.14).

The value of the FWHM, so the spot size in the focus of the microscope,

is d0 = (3.5± 0.5)µm.

3.1.6 Piezoelectric actuator

We used a Piezosystem jena NV40/1CL piezoelectric actuator: it is a device

for moving a mechanism via inverse piezoelectric effect. This is a typical effect

of some materials (mainly crystals and certain ceramics): when exposed to

an electric field they lengthened or shortened according to the polarity of the

field, and in proportion to the strength of the field. The direct piezoelectric

effect occurs when these materials are subjected to a mechanical force, in

this situation they become electrically polarized.

The NV40/1CL has a maximum displacement of 300 µm. We chose to

use it to solve a problem linked to the spot size: the 20X microscopy focus

the beam in a spot smaller than the single grain of our samples. That means

the signal we detected was influenced by the geometry of the single grain,

and by the part we hit with the fundamental radiation (zones near edges

produce more SH than flat ones). The piezoelectric actuator allowed us to

make an average measure on more grains: we put the sample on the device,

then we applied an oscillatory signal (produced by a functions generator)

to the actuator, hence it moved forward-and-back by making us collect an

average signal.
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3.2 Transmission mode set-up

The measures in transmission required to change the set-up.

As you can see in figure (3.15) the differences between this set-up and the

reflection one are all after the optical window.

The fundamental radiation is focused by the achromatic doublet on the

sample. We put the powder on an aspheric lens, which is placed in a mount

(we’ll call it MJ23), it was machined and realized specifically for this work.

The MJ23 mount is composed by two elements: the first one is round

in shape, the aspheric lens was screwed within it. This item stayed on the

second element of the MJ23 mount. The second piece is made of black PVC,

it has the place to insert the BG18 and the interferometric filters. This piece

was siliconized directly on the phototube.

We’ll describe just the devices which didn’t appear in the former set-up.

3.2.1 Achromatic doublet

The achromatic doublet was aimed to focus the fundamental radiation on

the sample. This device has a diameter of 25.4mm and a 20cm focal length,

besides it is anti-reflection coated for the spectral range 650− 1050nm.

An achromatic doublet is used to correct the chromatic aberration (i.e.

different wavelength radiation are focused in different places by the same

lens), as can be seen in figure (3.16). Our source is not perfectly monochro-

matic, each pulse is peaked on the value 790 nm, but it has a little wider

spectral content: that’s why we used the achromatic doublet.
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Figure 3.15: Transmission mode set-up

By applying equation (3.4) we got the value of the laser beam spot size in

the focus of the achromatic doublet, d0 = (30±10)µm. We performed a knife-

edge measurement to check this value; we used exactly the same technique

we had used with the microscope (see section 3.1.5). We have carried out

the measure twice, se we have two runs of data.

We reported the beam profile and the derivative of the knife-edge profile

vs knife position in figure (3.17) and (3.18).

The spot size obtained from figure (3.18) is d0 = (30± 2)µm.

The second run data are reported in figure (3.19), we reported only the

graph with the gaussian fit.

The spot size calculated from figure (3.19) is d0 = (30±1)µm. Hence the



3. Experimental set-up 46

Figure 3.16: Achromatic doublet correction of chromatic aberration
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Figure 3.17: First run beam profile

experimental data agree with the theoretic forecast.

From the equation (3.1.5) it follows that the depth of focus of the achro-

matic doublet is b = 2z0 = (2± 0.2)mm.
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Figure 3.18: First run beam profile fit with gaussian function
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Figure 3.19: Second run beam profile fit with gaussian function
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3.2.2 Aspheric lens

An aspheric lens is a device used to correct the spherical aberration, that

occurs because of the spherical surface of the lens, as we can see in figure

(3.20).

Figure 3.20: Spherical Aberration

Hence thanks to the achromatic doublet and to the aspheric lens, aber-

rations weren’t supposed to influence our measure.

The aspheric lens played the leading role in the transmission set-up, in

fact if satisfied many requests:

• we used it as powder-container for our sample;

• refractive index of the lens’s glass (C0550) doesn’t significantly change

for our two work-wavelengths. In fact n = 1.62 for λ = 400 nm and

n = 1.59 for λ = 790 nm;

• its focal length is very short (f = 1.1 mm)
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We needed a focal length as short as possible, because the powders were

in contact with the lens surface. So we had to minimize the distance between

the second harmonic source (powders) and the lens’s focus, in order to get a

parallel beam.



4. Measurements

We performed three different kinds of measurements: non-linearity, SHG

from ceramic glasses, coherence length of KNS powder.

4.1 Non-linearity

The non-linearity measurement was performed with two samples: a BBO

crystal and KNS powder 23 − 27 − 50, d < 32. Both these measures were

performed with the reflection mode set-up.

The first step was carried out just to get sure that our set-up was able to

detect a second harmonic (SH) signal; so we use a BBO as calibrator.

We replaced the piezoelectric actuator with the nonlinear crystal then,

after we had checked the alignment of the set-up, we performed the measure

with the following technique: we collected the data of the second harmonic

signals (from the phototube) and the incoming reference intensity (from the

reference photodiode). Hence we moved via software the motorized mount of

the half wave plate, in order to change the intensity of the incoming radiation
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and then we collected the data again.

Our goal was verify the following relation

I(2ω) ∝ I2(ω)
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Figure 4.1: BBO non-linearity

By plotting the SH vs the incident power we expected that the experi-

mental data could be well fitted by a parabola, as can be seen in figure (4.1).

The fit function is

y = y0 + A xn

We measured the data into two different runs of ten points each one.
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Run Fit coefficient

1 2± 0.1

2 1.9± 0.1

1 + 2 1.9± 0.1

Table 4.1: Fit coefficients

We reported the fit coefficients for the different runs in table (4.1), where

we also considered the fit of the two runs together. Anyway the value of the

fit coefficient doesn’t noticeably change.
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Figure 4.2: BBO log scale non-linearity
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We change the plot scales into logarithmic ones, in order to show clearly

the non-linear behavior of the BBO crystal (see figure (4.2)). In fact if

y ∝ xn (as in our case) by using the logarithmic scale we have on the abscissa

log xn = n log x and on the ordinates log y ∝ n log x, that is a linear relation.

Figure (4.2) shows an evidence for the non-linear behavior of the BBO crystal.

We repeated the same measurement, with the same technique on one of

the KNS powder samples: we used the KNS 23 − 27 − 50, d < 32. In this

step the powder was just spread (not pressed) on the surface of a metallic

(Al) mirror, that replaced the BBO.
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Figure 4.3: KNS non-linearity

Data are shown in figure (4.3), the fit gives n = 1.9± 0.2.

By looking at the logarithmic plot in figure (4.4), it is clear that also this

time the sample has a non-linear response.
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Figure 4.4: KNS log scale non-linearity

We had some difficulties in carrying out this measurement, because of the

small second harmonic intensity produced by the sample. Besides we hadn’t

yet replaced the metallic mirror with the piezoelectric actuator: it is a device

that let us acquire a signal averaged on more grains, despite of the spot size

(see section 3.1.6). Another problem dealt with the powder on the mirror:

it was just spread on the optical device without being pressed. It means

that there could be layers different in thickness and with a different surface



4. Measurements 55

configuration; this could involve some changes in SH signal depending on the

zone we were hitting with the laser beam.

4.2 SHG from ceramic glasses

The second set of measurements consisted in detecting second harmonic ge-

neration from three ceramic glasses: NaNs, LiKNS, KNaNs, all these samples

are as-quenched. The aim of this part of work consisted in establishing wether

this samples had an improved SHG efficiency, with respect the KNS ceramic

glasses (subjected to an annealing process) previously produced and studied.

The KNS ceramic glasses was the subject of [1]; we used the most per-

forming sample analyzed in this work in order to make a comparison.

In fact Dott. Bignardi was able to determine the efficiency of KNS ceramic

glasses, by a comparison with the efficiency of an out-of-phase-matching

BBO.

We couldn’t find a quantitative value of ceramic glasses’ efficiency, be-

cause we didn’t have a reference (like the BBO in [1]). We can only com-

pare the glasses’s efficiency among themselves, that’s why we used one of

Dott.Bignardi’s samples as a reference.

We chose to use the best sample analyzed in [1], KNS 23-27-50 2h 680◦C.

We report the main result of [1] in figure (4.5): KNS can produce SH

with an efficiency 10−5 times a BBO.

We performed this measurement with the reflection mode set-up. We put

the ceramic glasses on the metallic mirror, then we focused the laser beam

by using the vertical translator.
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When the sample was at the microscope’s working distance it was possi-

ble to see a blue spot on the ceramic glass: that’s an evidence for the second

harmonic generation process. Hence we noticed something interesting: by

scanning horizontally (using the translator) the samples, the phototube de-

tected different signals. It means that the glasses showed lack of homogeneity;

that’s why we chose to measure a second harmonic signal averaged on ten

different points of the sample.

We had to face another problem: the measurement took us enough time

to let the incident power change significantly. We could notice it by reading

the values detected by the reference photodiode, that’s why we normalized

the second harmonic signal. This means that we divided the SH intensity by

the square of the incident reference intensity.

We took also note about the offset (due to noise), it significantly in-

fluenced our data because the ceramic glasses produced a very few second

harmonic intensity. So we subtracted the offset to the second harmonic sig-

nal before normalizing it. We averaged the normalized value of the second

harmonic intensity.

We needed to know the focus intensity of our laser beam on the sample,

in order to use the calibration of KNS shown in figure (4.5). It’s useful to

recall equations (3.1) and (3.2), which allow us to calculate the peak intensity

of each pulse

Ep = (Power meter signal in W)/Rr (4.1)

Ip =
Ep

A · τ (4.2)
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The area of the beam in the focus is obtained by the relation A = pir2,

where r is half of the spot diameter. In our case we got

Ep =
56mW

54MHz
= 1 · 10−9J = 1nJ (4.3)

Ip =
1nJ

π(1.75 · 10−6)2m2 · 120 · 10−15s
= 80 GW/cm2 (4.4)

So we can evaluate the conversion rate of the KNS ceramic glasses, by

watching the value of the conversion rate relative to the focus intensity of

80 GW/cm2 in figure (4.5), the conversion rate is 8 · 10−9. Hence we put the

measured value of second harmonic intensity of the KNS equal to one, and

scaled the data relative to the other glasses; so we had an estimation of the

conversion rate value for all the samples.

Sample SHG (scaled) Conversion rate

KNS 1 8 · 10−9

KNaNS 0.9 7 · 10−9

LiKNS 1.2 1 · 10−8

NaNS 0.9 7 · 10−9

Table 4.2: SHG from ceramic glasses

Results are reported in table (4.2): only the LiKNS sample is able to

produces more second harmonic than the KNS one.
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4.3 Coherence length (from KNS powder)

This third measure was the main goal of this work: analyzing the second

harmonic intensity in function of the KNS powder grain size.
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Figure 4.6: Comparison plot

We found in literature a work made on different samples (SHG from KNTe

powders), but with the same measure we performed. We used the plot in

figure (4.6) as a comparison, we took it from [2].

Four samples were available:

• KNS 23− 27− 50, d < 32µm as-quenched;

• KNS 23− 27− 50, 32 < d < 45µm as-quenched;

• KNS 23− 27− 50, 45 < d < 90µm as-quenched;

• KNS 23− 27− 50, 90 < d < 125µm as-quenched;
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Hence we could get four points in the plot.

We were interested in finding the peak of the plot, in order to give an

estimation of the coherence length of the KNS.

We performed the measure in two different ways: by using the reflection

mode set-up and the transmission one.

4.3.1 Reflection measure

The first attempt we did with the reflection set-up (see section 3.1, figure

(3.1)) gave bad results.

We put the powder spread on the metallic mirror, like we had done in

the non-linearity measure. Unlike the ceramic glasses, when the sample was

at the working distance of the microscope, no blue spot could be seen. Be-

sides we noticed strong differences in SH intensity, by moving the horizontal

translator. This happened because there were zones with different powder

layers’ thickness; a bigger amount of powder means much more scattering,

so in these zones the second harmonic intensity vanished.

Another problem dealt with the spot size: the 20X microscope focus the

beam in a spot smaller than the single grain of each our samples. So the signal

detected by the phototube was influenced by the geometry of the single grain,

and also by the part we hit with the laser beam (zones near edges produce

more SH than flat ones).

We tried to overcome these troubles by measuring an averaged signal.

So we collected data by hitting with laser different zones of the powder (we

moved the metallic mirror with the translators) and then we averaged these

data.



4. Measurements 61

The measure failed, because we detected an intensity trend different from

the one in figure (4.6). In our opinion the causes are those just explained

previously: spot size and powder’s lack of homogeneity. Besides this tech-

nique has another drawback, that is it’s not repeatable, in fact every time

someone would try to perform the measure, the powder’s layer on the mirror

would always be inevitably different.

Thus we taught how to improve the set-up and the measure technique.

As far as the set-up is concerned, we replaced the metallic mirror with

the piezoelectric actuator. This device let us to solve the problem relative to

the spot size; in fact it moved forward-and-back in a displacement range of

less than 300µm via inverse piezoelectric effect (see section 3.1.6). It means

that we read on the oscilloscope a second harmonic intensity value that was

an average on a certain area, so an average on more grains.

The other improvement was about the measure technique. We overcame

at once two problems: the lack of homogeneity and to make the measure

repeatable. We used the following technique that can be called the sandwich

technique:

• we put a little amount of powder on an optical window;

• we pressed the powder with another optical window, exactly identical

to the other;

• we took off the upper optical window;

• we put the optical window with the powder on the piezoelectric actu-

ator;

• we performed the measure;
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• we repeated this procedure for the other samples.

We chose to use two optical windows because they are transparent to both

our work wavelength (400nm, 800nm). The best way to perform this measure

would require not to take off the upper part of the sandwich, but it wasn’t

possible. In fact the optical window is 2mm thick, while the microscope’s

working distance is 1.7mm.
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Figure 4.7: Reflection measure

We performed the measure and we handled the data as we had done for

the SHG from ceramic glasses measure. So we subtracted the offset before

normalizing; then we wanted to put our data on the figure (4.6) plot. So we

scaled our data, in order to have our maximum value equal to the maximum

value of the plot (4.6).



4. Measurements 63

Figure (4.7) shows our results. We fitted our data with the function

f(x) = a + bx2e−cx

where a,b,c are fit coefficients and x is the grain size. In [2] this is the

function of the comparison plot (figure (4.6)).

We don’t exactly know the grain size of our samples, we just know the

range size of each sample. So we used the mean value of each range to put

our data on the plot.

According to figure (4.7) the coherence length of KNS is supposed to be

15µm. This statement has to be confirmed by the transmission measure.

In fact if a different kind of measure gave analogous result, we could

conclude that 15µm is the coherence length of KNS.

4.3.2 Transmission measure

The transmission mode set-up (see section 3.2, figure (3.15)) was used only

to perform this measure. The first consideration to do is about the powders:

they aren’t transparent, they are whitish and opaque. So they transmit just

a few light, that’s why it was possible to see a transmitted signal only with

an extremely thin powder layer on the aspheric lens.

That’s the main problem of this measure, it isn’t possible to put the same

powder layer twice. If the measure was repeated, it could give different data,

however the trend should be the same. This was our goal: performing the

measure in transmission and finding the same trend we had found by working

in reflection.
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When the laser beam was focused on the sample, we used all the con-

trollers (translators and tilt) to maximize the second harmonic signal.

We performed the measure twice: the first time we averaged the SH signal

on more values measured in different zones of the powder, the second time

we measured the maximum value.

We treated the data in both cases as we had done in the previous measure.

The first measure didn’t succeed. We think that the cause is the average

process: the data are influenced by zones with thicker powder layer, that

means less second harmonic intensity. Actually we averaged on a powder

layer that was featured by a lack of homogeneity and this is unavoidable. In

fact we were forced to put a so little powder amount, otherwise we couldn’t

have a signal, that it wasn’t enough to cover all the lens and to be somehow

pressed, in order to have a homogeneous layer.

Hence we decided to perform a measure only on the maximum value of

the second harmonic intensity.

Results are reported in figure (4.8), we fitted our data with the same

function we used for the reflection measure. The trend is the one expected.

The most interesting thing to do is an overlap of the reflection and trans-

mission measures, that’s what we had done in figure (4.9).

It is amazing that the reflection measure and the transmission measure

are exactly the same point by point. However the most important results

shown in (4.9) are:

• same value of the coherence length

• same trend
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Figure 4.8: Transmission measure

We could so conclude that the coherence length of KNS is 15µm, we have

got this result from two totally different measures. Figure (4.9) represents

the main goal of this work.

We performed the transmission measure only once, it would be interesting

repeat it to control that the trend is actually the same. A further acknowl-

edgement of the SH intensity VS Grain size trend could come from a smaller

samples, in fact we hadn’t a point in the increasing part of the plot, before

the peak.
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Figure 4.9: Reflection and Transmission measures’ comparison

Another interesting and useful measure we didn’t perform was the abso-

lute efficiency on KNS powder; we hadn’t a reference, like quartz powder for

example.



5. Conclusions

We have analyzed the SHG process in four ceramic glasses and we have

compared their conversion efficiency with the values measured in [1], because

we needed a calibration. The second harmonic signal in all the ceramic glasses

is 5 order of magnitude less than a non-phase-matched BBO.

As far as the KNS powders are concerned we have studied the dependency

of the second harmonic generation on the grain size. We found a behavior

analogous to the one found in literature ([2]).

A powder sample with a smaller grain size value than the ours could give

a further confirm, in fact we have no data about the first part of the plot

(see figure (4.9)).

We determine the coherence length of the KNS, it is 15µm.

We found the same value with two completely different measure tech-

nique: reflection and transmission. We performed the transmission measure

only once, so it could be repeated to get a further confirm of our data.

Our result could be used to produce KNS glasses with 15µm domains, in

order to maximize the conversion efficiency.
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The evolution of these glasses will be use in integrated chips or optical

fibers, in fact they can be formed or processed easily into almost any shape.

Besides they don’t require a careful alignment of the optical set-up and they

are much cheaper than the standard optical converters.

Obviously the development of these disordered systems could bring to

appreciable results, only if the conversion efficiency will be improved. In fact

we were forced to use the photomultiplier (a device so sensitive that could be

used in photon counting experiments) to detect the second harmonic signal

produced by the samples.
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