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Chapter 1

Introduction

1.1 Overview

In the last few years the interest in the energy transfer at the nanoscale has considerably grown

due to the many technological and biomedical possible applications from the photothermal ther-

apies in oncology [1, 2] to in-situ drug delivery [3]. The fundamental idea underlying these

applications is selective thermal energy delivery in form of heat transfer from the metal nanopar-

ticle to the environment. Therefore, an understanding of the thermomechanical dynamics is

crucial in view of future applications.

Unfortunately, the development of physical models for such systems is not easy due to their

complexity in several aspects. First of all, in a nano-object the chemical and physical properties

are essentially di↵erent from the macroscopic situation [4, 5]. For example, at the nanoscale,

heat and mechanical work are intrinsically correlated concepts.

In second instance, the metal nanoparticles used in biomedical and chemical applications are

often embedded in a complex chemical environment. Modeling these chemical bonds and their

physical responses could be extremely di�cult. For this reason, in recent years, new statistical

and mathematical tools are been developed to extract useful informations from the experimental

data without previous knowledge of the physical mechanisms of the system. These new analysis

techniques are generally named Data Mining or Pattern Recognition, and are applied in many

scientific fields, including signals analysis, meteorology, genomics, complex physics simulations,
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Figure 1.1: What is Data mining? Data Mining is a computer based-process for converting large data

volumes to information and knowledge by finding patterns within the data using di↵erent techniques

of visualization, reduction of dimensionality, classification, and construction of models. Data Mining is

also an interdisciplinary tool encompassing a blend of statistical, artificial intelligence, and information

systems disciplines for pattern recognition, mathematical modeling, and databases activities.

and biological research. In particular, Data Mining is a computer based-process for converting

large data arrays to information by finding patterns within the data using di↵erent techniques

of visualization, reduction of dimensionality, classification, and construction of models.

The aim of this thesis work is investigate the thermomechanical dynamics through clustering

techniques, starting from single nano-object time-resolved optical measurements. In particular,

we are interested in the study of a complex system like gold nanoparticles immobilized on a

functionalized surface through the bond between biotin and streptavidin. These results will be

compared against a standard analysis based on a sum of exponentially decaying functions and

will be shown to provide the best performance.

1.2 Outline

The work is organized as follows. The second chapter explains the basic concepts of time-resolved

optical spectroscopy, with particular attention to the pump-probe technique, and the working

principle of ASynchronous Optical Sampling (ASOPS)[7, 8]. After that, the experimental setup,
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the Nanoscope and the sample’s characteristics will be described. The first samples are gold/ti-

tanium nanodisks made by electronic beam lithography. The second ones are gold nanoparticles

immobilized on a functionalized substrate through the bond between biotin and streptavidin.

The third chapter describes some common clustering and pattern recognition techniques,

aim of this thesis work. In particular, the time-resolved spectra will be analyzed using two

approaches: a Singular Value Decomposition (SVD) analysis and a hierarchical binary cluster

tree dendrogram built using an Euclidean distance (Ward’s method). The SVD has many useful

applications in signal processing and statistics. The hierarchical cluster analysis is usually used

to find relationship in data. Furthermore, these approaches will be compared with a standard

data analysis. Appendices were added in order to collect information and annotations.



4 Introduction



Chapter 2

Time-resolved spectroscopy

2.1 Optical pump-probe technique with ASOPS

Time-resolved spectroscopy is used to study the thermomechanical dynamics of single nano-

objects (in our case, gold nanodisks and gold nanospheres). The thermomechanical relaxation

dynamic of these systems spans time scales ranging from 100 ps to 10 ns.

The standard technique that is used to investigate these time scales is the pump-probe based

on a mechanical delay line. In this method, a laser is splitted into two beams through a beam

splitter. Between the two beams, the one with greater intensity (pump) is used to excite the

sample. The second one with lower intensity (probe) is used instead to “photograph” the dy-

namics of the sample. Since the probe laser beam is much less intense than the pump’s one does

not substantially excite the sample (Fig. 2.1).

What it is measured directly with this technique is the di↵erence of relative transmission (or

relative reflectivity) of a certain material. The optical properties of the material are changed by

a perturbation in the electronic structure. This perturbation is given by the pump pulse, the

variation in reflectivity is investigated through probe pulses.

If we are able to ensure that the probe pulses arrives on the sample with increasing delays time

with respect to pump pulses, we are also able to follow the relaxation dynamic of the sample

from the excited state to the unperturbed. To introduce the delay between the pulses, the most

used method is a mechanical delay line. This line allows the pump pulse to follow a di↵erent
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Figure 2.1: Typical pump-probe optical experiment performed on a nano-object. The signal from the

probe pulses is detected as the mechanical delay line is being scanned. By the relation �t = 2�r/c, c

being the speed of light, the position change �r of the mechanical delay line is translated into a change

of the time delay between pump and probe pulse.

optical path so that the two beams arrive on the sample with a relative delay. By controlling

the di↵erence in the optical path of the probe beam with respect to the pump beam, the time

delay between the two pulses can be tuned. Varying this delay one can access to the relaxation

dynamics of the sample.

This technique allows us to perform time-resolved measurements with excellent temporal res-

olution, however presents di↵erent problems when the nano-object’s thermomechanical dynamic

exceeds the hundreds of ps. These are the typical problems [9]:

• A long delay line makes it di�cult to maintain the spatial coincidence between the pump

beam and the probe.

• The data acquisition is very slow because each time we have to move the slide to change

the optical path. Slow acquisition causes problems in terms of stability of the experimental

line (thermal fluctuations in the laser, in the optical elements, in temperature in the case

of cryogenic measurements, and so on...)

• The problems listed above are intensified if the technique is applied in microscopy. In such

case the acceptance on spatial alignment is more stringent.

The above problems can be solved using a pump-probe technique based on ASynchronous
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Figure 2.2: Laser source and ASOPS system.

Optical Sampling (ASOPS), that doesn’t involve movement of mechanical parts.

2.2 ASOPS working principle

The ASOPS used in this work is composed of two lasers with wavelengths of 780 nm and 1560

nm. The lasers are pulsed with a pulse length of about 150 fs (Fig. 2.2). The repetition rate of

the pump laser is 100 MHz. In the probe laser the repetition rate is sligthy detuned with respect

to pump one’s.

Defining as ⌫
pump

and ⌫
probe

the frequencies of repetition rate of the two lasers we can deter-

mine the delay time between the two:

�t =

����
1

⌫
pump

� 1

⌫
probe

���� =
�⌫

⌫
pump

· ⌫
probe

(2.1)

where �⌫ is the frequency di↵erence between the two lasers. Supposing that the frequency

di↵erence in small and expanding the last equation (⌫
probe

= ⌫
pump

+�⌫) we obtain:

�t ⇡ �⌫

⌫2
pump

(2.2)
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Figure 2.3: Operating principle of the ASOPS technique. In figure is shown the mutual temporal delay

between the pump and the probe pulse, defying f
r

and f
r

��f respectively. Because of the detuning �f

between the pulses of the two lasers, a progressive temporal delay between them is accumulated which

allows to measure the entire relaxing dynamics of the sample.

Eq. 2.2 defines the temporal step of a pump-probe measurement. Considering a typical

frequency detuning of 10 KHz, we get a resolution of 10�12 s . The temporal window sampled

is obtained by the following formula:

t
window

=
1

⌫
pump

=
1

100 MHz
= 10 ns (2.3)

Now we want evaluate the time it takes to perform a pump-probe measurement. The probe

pulse accumulates a delay �t for each pump pulse, until they meet again after a fixed time

interval t0.

The operating principle of the ASOPS frequency detuning is represented schematically in

Fig. 2.3. We estimate t0. How many pulses of probes are needed to cover the interval between

two successive pump pulses? Defining m as the number of pulses that we are looking for:

m�t =
1

⌫
pump

(2.4)

where in the right-hand side there is the distance in time between two successive pump pulses.
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Recalling the equation 2.2:

m�⌫

(⌫
pump

)2
=

1

⌫
pump

(2.5)

so

m =
⌫
pump

�⌫
(2.6)

The value of t0 is related to m as follows:

t0 = m

✓
1

⌫ ��⌫

◆
(2.7)

Substituting m from equation 2.5 in 2.7 we get:

t0 =
⇣⌫

pump

�⌫

⌘ 1

⌫
pump

t0 ' 1

�⌫
(2.8)

The management of the temporal delay between the two lasers pulses eliminates the prob-

lems that characterize the traditional pump-probe method. In fact, if we don’t need to give a

mechanical delay, we have no trouble keeping spatially coincident the two lasers beams. With

conventional techniques, the time needed to investigate a single time window of 10 ns with a

temporal resolution of 150 fs involves an acquisition time of the order of an hour, with ASOPS

the same measurement is made in 1 ms.

As regards the temporal window, with the traditional technique you typically have a dynamic

range of the order of ns or less, using the ASOPS the temporal window is increased by one order

of magnitude, or 10 ns.

2.3 Experimental setup

2.3.1 Optical lines

The experimental setup shown in Fig. 2.4 has been studied for time-resolved optical microscopy

measurements on nanostructured samples. Laser sources, Nanoscope and detectors are rapp-
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Figure 2.4: Scheme of the experimental setup. Under: the optical lines’s legend.

resented as black boxes with an input and an output. Mirrors and lens have a characteristic

representation and the complete legend is reported below figure.

To generate the pulses at 1560 nm for our experiments we used a erbium doped fibre laser,

guided in the nanoscope through a system of optical elements. An half-wave plate coupled with a

polarizer allows to settle the intensity of the beam, while the passage through two convex lenses

of focal lenght 40 cm and 20 cm, f1 and f2 respectively, forming an expanding telescope, expands

the diameter of beam. Before the pump beam enters the nanoscope, it passes through a pinhole

of variable radius. The beam is detected by a photodetector (in Fig. 2.4, labelled as “1560”).

The probe beam, at 780 nm, is splitted by a 50/50 beam splitter. It produces two beams at 780

nm: a probe beam, that enters in the nanoscope, and the reference one, driven to the di↵erential

photodetector 1.

A mechanical slide supporting two mirrors, allow us to vary this line, so that we can set the

temporal overlapping of the probe beam trasmitted through the sample and the unperturbed

one, before entering the photodetector, which is fundamental in order to acquire the di↵erence

1see appendix for more information.
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between these signals.

Both pump and probe laser beams outgoing from the nanoscope are collected by parabolic mirrors

and transported to the photodetector by an optical fiber.

2.3.2 Nanoscope

Figure 2.5: Nanoscope’s structure and beams’ path

In this subsection it is explained the structure of the nanoscope, together with the common

path of pump and probe beams. (Fig. 2.5). This tool is composed by two mirrors, a 50/50 beam

splitter, two objectives and a CCD camera.

After the beam enters in the nanoscope, the two gold mirror reflect the beams on the 50/50

beam splitter. This serves to direct the beam into a 50x Nikon objective. The divergent beam,

transmitted through the sample, is collected by an identical objective. After that, the outgoing

beams are collected by parabolic mirrors and they are guided to the photodiodes by means of

optical fibers. In the case of reflectivity measures, a supplementary 50/50 beam splitter allows

to split the reflected probe toward a fiber linked with the di↵erential photodiode2.

2For more details on di↵erential photodetector, see Appendix A.1.1.
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The advantages of using the nanoscope:

• The size of probe beam’s spot (1 µm) facilitates the detection of objects characterized

by dimensions much lower than wavelenght of laser beam. If the distance between two

nanoparticles on the sample is similar to the size of laser’s spot, it could be easier to

identify the single particle focusing the probe beam to the di↵raction limit. To do this, we

have to apply some optical techniques as the raster-scan, described (qui sotto).

• Characterization and spatial control of the position of laser beams. By means of the

nanoscope, it is possible to retrace the spatial distribution of beams, focus the beam on

the xy plane in which the sample lies, and also evaluate the angle of beam with respect to

z axis.

• Optimization of beams to perform pump-probe measurements. Since that the profiles of

the laser beams are gaussian, it is easy to calculate the energy density at di↵erent z planes

for each of the two beams. It is also possible to locate the mutual position of beams in

order to make them collinear, incident on the sample and directed along the z axis. Due

to the chromatic aberration of the first objective, the probe beam is focused higher with

respect the pump beam. This represents a great advantage in the current setup. On the

sample, the pump spot is larger than the probe spot. This assure that we are probing an

uniformly excited area of the sample.

These things are fundamental to allow the correct positioning of beams on the nano-object.

The aim of this work is the analysis of the power transmitted through a single or group of nano-

objects at the position (x0, y0) on a surface, defined as

P
t

= P
i

� �
ext

· I(x0, y0) (2.9)

where P
i

is the incident power on the sample, �
ext

is the e↵ective cross section and I(x0, y0)

is the intensity spatial profile. The second term on the right-hand side represents a power and

takes into account both the energy absorbed and scattered by the sample. The photodetector

gives a signal in terms of voltage and to identify the signal coming from the nanoparticles is
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necessary to do a sequence of translations, the so-called raster scan, that allows to create an

image, that represents the beam reconstructed using the nano-object. Indeed, when the probe

beam, whose spot is much bigger than the characteristic size of particles, passes on a nano-object,

the system records a variation of transmitted power given by the convolution of the Gaussian

function, corresponding to the beam, and a Dirac delta function, associated to the particle.

2.4 Samples

In this section, we want to describe the structure of our samples. Their position in the nanoscope

has been indicated in Fig. 2.5.

2.4.1 Gold/titanium nanodisks

Figure 2.6: Single gold/titanium nanodisk geometry.

The sample was made using the electronic lithography at the Lasim3 and consists of a

monocrystalline sapphire substrate (Al2O3) (R-plane cut, size 10 mm x 10 mm and thickness of

127 µm ) on which are deposited aluminium structures (Al) (Fig. 2.7). This makes it possible

to identify the correct position of the nanodisks on the sample through the optical technique

already mentioned in the previous section (raster scan). The sapphire plate has the merit to be

a transparent dielectric (refractive index n
z

= 1.77 @ 780 nm e n
z

= 1.74 @ 1560 nm [10]) with

thermal conductivity k = 20 W

m·K @ 300K. The choice of a transparent medium with a low k

facilitates physical interpretation because it allows to consider the sapphire “ almost” isothermal

during the heat exchange process between nanodisk and substrate.

Gold nanodisks are evaporated on this sapphire plate. Between the nanodisk and the sub-

strate, it is interposed an adhesive layer of titanium. The Fig. 2.6 shows the thickness and the

3Laboratoire de Spectrometrie Ionique et Moleculaire, Lyon, France
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geometry of the single disk. We have five di↵erent diameter sizes: 60, 70, 80, 90, and 100 nm.

(Fig. 2.7)

The disks of each measure are placed in di↵erent sectors according with the dosage of the

electron beam4. The Fig. 2.8 shows a schematic illustration of a typical sub-area characterized

by disks of a given diameter and dosage, and it consists of 16 disks surrounded by rectangular

markers.

In this work we performed di↵erent measurements on single nanodisks of 90 and 100 nm

diameters.

Figure 2.7: The template of the nanodisks’ sample. The nanodisks are organized for dimension and electronic

dose.

4for more information about the definition of dose in EBL, see:

http://en.wikipedia.org/wiki/Electron beam lithography. The above mentioned values are normalized to a

reference dose and are therefore dimensionless.
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Figure 2.8: Left: Schematic representation of a single zone. Right: An optical scanning image of dimensions 30

⇥ 30 µm, disk’s diameter = 100nm and maximum dose.

2.4.2 Gold nanospheres

The substrate has been realized at NEST Laboratory5 and consists of a sapphire (Al2O3) plate

(diameter 12 mm, thickness 180 µm), on which are nanolitographed Cr/Au 10 nm/100 nm mark-

ers, required to localize nanoparticles on the sample. In Figg. 2.9 - 2.10, markers’s templates are

sketched. On this substrate, after its functionalization, gold nanospheres have been immobilized.

The functionalization of our samples has been realized at ICRM-CNR6, by deposition of

streptavidin conjugated gold nanoparticles7 on the substrate. The average diameter of these

nanospheres is 40 nm. We are now going to explain the procedure followed to coat the slides.

After 15 minutes of oxygen plasma treatment, sapphire substratum were immersed for 30 minutes

in a 0.9M ammonium sulfate solution (half volume ofH2O, half volume ofNH4SO4) containing

poly (DMA-co-NAS-co-MAPS)8at 1% w/v concentration.9

The covered substrates were left for 20 minutes immersed in the polymer solution and then rinsed

with water, dried with nitrogen and finally cured under vacuum at 80° for 15 minutes. The last

5National Enterprise for nanoScience and nanoTechnology, Pisa, Italy
6Istituto di Chimica del Riconoscimento Molecolare-Consiglio Nazionale delle Ricerche, Milan, Italy
7Made by Cytodiagnostics, Burlington, Ontario, Canada
8For the synthesis of copoly refer to [11]
9The 1% concentration, expressed through the ratio weight/volume, means that there is 1 g of solute for 100

ml of solution
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Figure 2.9: Scheme of a template (4.7 mm ⇥ 6.8 mm), characterized by macro-areas or clusters (0.5

mm ⇥ 1.5 mm). This particular construction allows to spot di↵erent antibody concentration on each

clusters.

passage, named curing, in addition to dry the sample, facilitates the creation of a strong bond

between the polymer and the surface.

When the sample has been dried, biotinylated antibody was patterned on sapphire sub-

strates10 coated with polymer. The antibody was diluited in PBS11 with four di↵erent concen-

trations and the solution was spotted on the sample. The slides were placed in a humid chamber

immediately after the spotting and stored overnight at room temperature. After immobilization,

the residual active esters on the slides were blocked with a blocking solution (ethanolamine) for

1 hour, washed with water and dried by a stream of nitrogen. After that, the spotted substrates

were then incubated with a solution of gold nanospheres conjugated with streptavidin at di↵erent

concentrations for 1 hour, washed with the Washing Bu↵er for 10 minutes under stirring and

10Made by means of SciFlexArrayer S5 spotter from Scienion (Berlin, Germany). The diameter of the spot is

about 150 µm
11Phosphate Bu↵ered Saline
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Figure 2.10: Each marker that identifies a macro-area is divided in cells (15 µm ⇥ 15 µm), named

with a letter and a number and characterized by a scan area of 10 µm ⇥ 10 µm, a gold edge and a dot

(diameter 500 nm). This makes it possible to identify the correct position of the particles on the sample

through the optical technique already mentioned in the previous section (raster scan)

finally rinsed with water and dried with nitrogen. (see Fig. 2.11)

In this work we measured and analyzed two sample’s areas with di↵erent concentrations

of nanoparticles and antibody: (1) sample A - cluster 4 with nanoparticles diluted 1:10 with

respect to the manufacture’s dilution and 0.1 mg/ml antibody, (2) sample E - cluster C3 with

nanoparticles undiluted with respect to the manufacture’s dilution and 1 mg/ml antibody.

It is important to highlight that the gold nanospheres are a much more complex system

to study. Their modeling through simple analytical models is almost impossible, because the

microscopic arrangement and physical response of streptavidin-biotin bonding is unknown. In

fact, depending on the di↵erent dilutions of antibody and nanoparticles, these could clustering

into groups or the chemical enviroment could be di↵erent.
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Figure 2.11: Schematic rappresentation of the streptavidin-biotin bonding that has been used to im-

mobilize the nanoparticles on the sapphire substrate.

2.5 Operating procedures

This section presents the procedures that are required to perform time-resolved pump-probe

measurements by means of the Nanoscope.

To obtain the best measurement, it is fundamental that both pump and probe beams are parallel

and coaxial on the nano-object. Below we summarize the main steps that are required:

• Alignment of laser beams

Pump and probe beams are collimated and spatially overlapped before entering in the

Nanoscope. In fact, the spatial coincidence of the beams’ pulses is required.

• Nanoscope’s optimization

Our goals is to drive pump and probe beams through the two 50X Nikon’s lenses. It is

important that the distance between the two optics and the sample is the same.

• Research of the minimum waist

We want to determinate the minimum waist w0 of the probe beam using knife-edge tech-

nique12. Along z axis, the sample will be placed in w0 (see Fig. 2.5)

• Positioning on the single nano-object

By means of the program “SPM Control”, it has been possible to achieve a so-called raster

12For more informations on knife-edge technique, see Medeghini and Sterzi’s thesis[7, 8]
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scan of the sample. This process allow us to obtain a square “map” of the sample. This

image is defined as the imaging of the beam. Through this imaging it has been possible to

align the laser beams on a single nano-object13.

All these steps are the same both in the case of nanodisks that in that the nanospheres.

13For more informations on positioning techniques, see Medeghini and Sterzi’s thesis[7, 8]
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2.6 Time-resolved pump-probe measurements

Figure 2.12: Relative variation of transmission versus time delay measured on a single nanodisk of 100 nm

diameter. Pump’s power is 61 mW , probe’s one is 470 µW . The probe’s FWHM is 1.05 µm. The detuning is set

to �⌫ = 10 KHz with a temporal resolution of 1 ps.

Once the beams are correctly positioned on the nano-object, we begin to measure with

the Asops system. The pump’s pulse excites the nano-object (in our case, a nanodisk or a

nanosphere), delivering the energy density dU. We can identify three di↵erent temporal dynam-

ics, corresponding at three di↵erent time scales.

In a first step, the absorbed energy produces the heating of electron gas of the metallic

nanostructure (subpicosecond time scale). In fact, the electromagnetic energy is absorbed by the

electrons, as in the Drude model.

After that, the electrons thermalize with the lattice’s phonons by means of scattering processes

(picosecond time scale). The e↵ect is an increase of lattice’s temperature from T to T + �T ,

that causes a thermal expansion of the nanostructure itself. As a result of electron’s heating,

there is a change in the dielectric constant and a variation of nano-object’s size, leading to an

increase of the extinction cross section of the object exposed to the probe beam. Therefore, we

measure a decrease of beam’s transmitted power, according to Eq. 2.9.
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Figure 2.13: Blue spectra: Relative variation of transmission versus time delay measured on a 100 nm single-

nanodisk. Red spectra: Relative variation of transmission versus time delay measured on a 90 nm single-nanodisk.

Pump’s power is 61 mW , probe’s one is 470 µW . The probe’s FWHM is 1.05 µm. The detuning is set to �⌫=10

KHz with a temporal resolution of 1 ps. The curves have been normalized with respect to the maximum value

and they have been restricted to a temporal range up to 2 ns.

At the end, there is the energy’s relaxation of the nano-object with the substrate (nanosecond

time scale). In this step the energy density dU absorbed by the nano-object is transferred to the

substrate by mechanical and thermal dissipation channels.

As the dissipating processes take place and the extinction cross section reaches the unper-

turbed value, the nanostructure slowly returns to its thermomechanical equilibrium. This leads to

a decrease of relative transmittance�Tr/Tr, that amounts to zero when the particle is completely

thermalized with the substratum at temperature T . Together with the typical exponential decay

will be observed even an oscillation in the relative transmittance �Tr/Tr due to the launching

of an acoustic mode in the nanostructure. (see Fig. 2.12)
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Figure 2.14: Blue spectra: Relative variation of transmission versus time delay measured on a single-nanosphere

(sample E). Red spectra: Relative variation of transmission versus time delay measured on on a single-nanosphere

(sample A). Pump’s power is 3 mW , probe’s one is 200 µW . The probe’s FWHM ⇠ 1 µm. The detuning is

set to �⌫=1 KHz with a temporal resolution of 100 fs. The curves have been normalized with respect to the

maximum value and they have been restricted to a temporal range up to 1 ns.

The variation of transmitted power, �Tr, is proportional to the voltage provided by the “RF-

OUTPUT” channel of the di↵erential photodetector, while the value of absolute transmitted

power, Tr, is proportional to the one measured by the “MONITOR+” channel. Because of the

di↵erent conversion of the two channels, there is an intrinsic conversion factor that has to be

taken in account. As we are interested in the relaxation time of the sample, the exact value of

the ratio is not significant, therefore an error due to this conversion factor can be neglected.

The first step of the measurement consists in measuring �Tr, averaged on n temporal scans.

The value �Tr provided by the photodetector must be divided by the voltage of probe’s beam

in absence of pump one, Tr, in order to obtain a relative variation.

In Figg. 2.13 and 2.14 we show all the curves obtained through the measures, and that will

be analyzed in the next chapter. The curves are normalized with respect to the maximum value.

Note that the numeration used it will be found in the analysis of the next chapter.



Chapter 3

Data mining and clustering

techniques

We analyze the thermomechanical properties of gold nanoparticles immobilized on a functional-

ized surface through the bond between biotin and streptavidin, which is characterized by high

a�nity and binding energy.

Starting from the pump-probe measurements that have been shown in the previous chap-

ter, we study the thermomechanic of these complex systems without previous knowledge of the

physical mechanisms responsible for the detected signal. For this purpose we use mathematical

and statistical tools, rather than curve fitting analysis. In fact, in order to apply a curve fitting

analysis we need a theoretical model, from which it is possible to obtain a functional trend. In

our system the microscopic molecular arrangement and physical response of streptavidin-biotin

bonding is unknown. Depending on the di↵erent dilutions of antibody and nanoparticles, these

cluster into groups and the chemical enviroment could be di↵erent.

A typical approach to this kind of biological complex systems is known as data mining or

pattern recognition. The overall goal of our data mining process is to extract useful information

from experimental data and sort out the di↵erences among di↵erent dilution of samples. One

possibility is to organize the measures into groups by similarity. These ordered data sets are

called clusters.

In this thesis work, the time-resolved spectra are analyzed using two clustering approaches: 1)
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a Singular Value Decomposition (SVD) analysis, 2) a hierarchical binary cluster tree dendrogram

built using an euclidean distance (Ward method). These approaches are compared against the

standard analysis based on the sum of exponentially decaying functions and are shown to provide

the best performance.

First of all, we try to apply these techniques to well-known nanostructures like gold nanodisks

coupled with an isothermal substrate1, for which an analytical model for the thermomechanical

dynamic is already been developed[12, 19]. Next, we will focus on the gold nanospheres, once it

has been demonstrated the e↵ectiveness of the technique for our purposes.

3.1 Gold/titanium nanodisks

3.1.1 Singular Value Decomposition

In this section we describe the use of Singular Value Decomposition (SVD) in analyzing time-

resolved optical measurements on single gold nanodisks shown in Fig. 2.13. The dynamics

measured on the disks with di↵erent dimensions looks very similar, the signature of the specific

time-response residing in tiny di↵erences. The total 9 normalized measurements have been

organized in a m ⇥ n data matrix2 X with rank3 r. The nth column represents a complete

experimental trace. The mth row maps a time delay for each trace. It is important noting that

the traces are a↵ected by evident fluctuations of the noise superposed on the exponential decay

dynamic due to the di↵erent experimental conditions (temperature, humidity, laser’s fluctuations,

ecc).

SVD is a linear transformation of the expression from the m-delays ⇥ n-traces space to

reduced l ⇥ l space, where l = min{n,m}. In particular, the data matrix is expanded in the form

X = USV T [20]. (3.1)

U is a matrix with the same dimensions as X matrix (m ⇥ n) whose columns are called left

singular eigenvectors u
k

. Since {u
k

} form an orthonormal basis for time-resolved measurements,

u
i

· u
j

= �
ij

. (3.2)

1In the case of sapphire, the thermal conductivity k is 20 W

m·K @ 300K, and so the substrate can be considered

as a transparent medium.
2For the nanodisks’ measurements, we have a 2000 ⇥ 9 data matrix X.
3The rank of a matrix is the number of linearly independent rows or columns.
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Figure 3.1: Graphical depiction of SVD of a matrix X, annotated with notation adopted in this chapter.

These eigenvectors {u
k

} are found by minimizing the variance between the residues of each ex-

perimental trace and a direction (eigenvector) in a n-dimensional space.

The rows of V T contain the elements of the right singular eigenvectors v
k

, {v
k

} form an or-

thonormal basis for time delays.

S is an n ⇥ n diagonal matrix with nonzero elements on the diagonal, called the singular values,

or eigenvalues. By convention, the ordering of the singular eigenvectors is determined by high-

to-low sorting of eigenvalues, with the highest eigenvalue in the upper left index of the S matrix.

For a square symmetric matrix X, SVD is a diagonalization process, or solution of the eigenvalue

problem for X. In Fig. 3.1 it has been shown a graphical depiction of the SVD of a matrix X.

To obtain the SVD, calculate V T and S by diagonalizing XTX = V S2V T , and U = XV S�1

using the Gram-Schmidt orthogonalization process. SVD is calculated with MATLAB® . The

code is shown in Appendix B.1.

We can define the coordinate matrix

M = SV T (3.3)

so that X = UM . This is a useful way to reconstruct every experimental trace a
j

as

a
j

=
nX

k=1

v
kj

s
k

u
k

=
nX

k=1

m
kj

u
k

(3.4)
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Figure 3.2: u1 left eigenvector versus delay time, extracted from singular value decomposition applied to

nanodisks’ data matrix X. The eigenvector presents the typical exponential decay with an oscillation superposed.

which is a linear combination of the eigenvectors {u
k

}. The m
jk

coe�cients are the projections

on this orthonormal basis4 . The rows of M contains the coordinate of each measurements

projected into the eigenvectors space.

In this work the SVD is used to reduce the dimensionality of the data, projecting the data on a

reduced eigenvector basis of particular relevance. How to choose the right number of eigenvectors

will be the main topic of discussion.

Once the eigenvectors set will be chosen, we will perform a fit on them and then we will compare

the results with the curve fitting analysis on the individual trace.

Let’s start with the analysis of the nanodisks’ traces. In Figg. 3.2 - 3.3 are shown the

first two eigenvectors (u
1

and u
2

) that are been calculated with SVD, starting from nanodisks’

data matrix X. The eigenvector u
1

shows the typical exponential decay with an oscillation

superposed. The eigenvector u
2

is essentially noise. The remaining eigenvectors (u
3

to u
9

) have

4Therfore, the m
kj

can be rewritten as

m
kj

=< aj|uk > . (3.5)
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Figure 3.3: u2 left eigenvector versus delay time, extracted from singular value decomposition applied to

nanodisks’ data matrix X. The eigenvector u2 is essentially electronic noise.

similar characteristics to the eigenvector u
2

, and are not shown.

A first way to determine if the information in the reconstruction of the experimental traces

is contained only in u
1

(as we have assumed), consists in looking at the eigenvalues s
k

and at

the trace projections m
jk

on the eigenvectors basis {u
k

}. If the projections and the eigenvalue

associated to the single eigenvector have a relative weight greater than the others, then this

eigenvector alone will capture the data trend. Fig. 3.4 shows the eigenvalues and the mean of

the absolute coordinates5 for each nanodisks diameter (100 or 90 nm) and for each eigenvector.

Observing Fig. 3.4, we can note that the first eigenvalue s1 and the first projection M1 are

dominant with respect to the others for both diameters. This is a remarkable result, because it

5For example, M
k

for 90 nm nanodisk traces has been calculated as

M
k

=
1

5

5X

j=1

|m
kj

|.

M
k

for 100 nm nanodisk traces has been calculated as

M
k

=
1

4

9X

j=6

|m
kj

|.
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Figure 3.4: a) Eigenvalues s
k

in semilogarithmic scale calculated with SVD. b) Histogram of the mean of the

absolute value of the coordinates. The red bars represent the average coordinates for 90 nm nanodisks traces.

The blue ones represent the average coordinates for 100 nm nanodisks traces.

confirms the initial observations.

As we have said previously, we can reduce the data dimensions by projecting the original

data into a subspace spanned by the two eigenvectors with the highest eigenvalues, visualizing

these coordinates as points in a scatter plot (Fig. 3.5). In this case two clusters are evidenced,

each composed of points corresponding to the same nanodisk’s diameter. Therefore such a kind

of analysis allows us to distinguish one nanodisk’s size from the other, discriminating objects

whose diameter of about a hundred nanometers di↵ers by a ten percent.

Shannon entropy

The second way that we have used to estabilish how many eigenvectors are needed to represent

the data accurately, is to calculate the Shannon entropy6, or information entropy. In physics,

the word entropy has important implications as the amount of “randomness” of a system. In our

case, we would like to find a useful tool to measure the information content of our experimental

data.

6Shannon entropy was introduced by Claude E. Shannon in his 1948 paper ”A Mathematical Theory of

Communication”[14]
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Figure 3.5: In this scatter plot each point represents the coordinates (m1j , m2j) of a specific trace in the space

spanned by the first two eigenvectors (i.e with the highest eigenvalues). The color code and the numeration is the

same of Fig. 2.13. Note that projections from disks of same diameter are grouped in clusters.

We define the Shannon entropy of our data set as[13]

0  H(X) =
�1

log(n)

nX

k=1

p
k

log(p
k

)  1, (3.6)

where

p
k

=
s
k

2

P
n

k=1 sk
2
, (3.7)

indicates the relative significance of the kth eigenvector u
k

in terms of fraction of the overall

expression that they capture. Therefore, the equation 3.6 measures the complexity of the data

from the distribution of the overall expression between the di↵erent eigenvectors, where H(X) =

0 corresponds to an ordered and redundant dataset in which all information is captured by a

single eigenvector, and H(X) = 1 corresponds to a disordered and random dataset where all

eigenvectors {u
k

} are equally expressed.

We have calculatedH(X) for 100 and 90 nm nanodisks, and we have obtainedH(X) = 0.1262

for 100 nm disks and H(X) = 0.0593 for 90 nm. This is an important result. Given that for

both samples the entropy is close to 0, we can conclude that each experimental trace contains

for both diameters the same amount of information. For this reason it is su�cient only one

eigenvector to represent each group of measurements.
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Figure 3.6: Rect function autocorrelation versus lag. 1) If ⌧ = 0 the autocorrelation function R
xx

(0) is equal

to 1, because rect(t) = rect(t + 0). 2) If ⌧ = T0/2, Rxx

(T0/2) = 1/2 because the rectangles are overlapped for

half and 3) for ⌧ = T0 the rectangles are no longer superimposed and R
xx

(T ) = 0

Eigenvectors autocorrelation

To determine the randomness of our eigenvectors we have performed an autocorrelation. In fact,

the white noise is completely decorrelated. As a starting point, we note that the autocorrelation

function of a random signal describes the general dependence of the values of the signal at time

t on the values of the same signal at another time t+ ⌧ .

Considering a signal f(t) (i.e. continuous-time), its autocorrelation function is written as:

R
xx

(⌧) = lim
T!1

1

2T

Z
T

�T

f(t)f(t+ ⌧)dt (3.8)

where T is the period of observation and ⌧ is the lag. Usually one plots the autocorrelation

R
xx

(⌧) as a function of the lag ⌧ .

When computed, the resulting number can range from +1 to -1. An autocorrelation of +1

represents perfect positive correlation and for non-periodic signal it is possible only when ⌧ = 0,

while a value of -1 represents perfect negative correlation.

As an example, consider the rect function, equal to 1 if �T0  t  +T0, and 0 otherwise.
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Figure 3.7: The blu line represents the autocorrelation of eigenvector u1 versus lag. In red the 95%-confidence

bounds for a white noise autocorrelation. The autocorrelation values clearly exceed the 95 %-confidence bounds

then the eigenvector u1 contains a signal.

As shown in Fig. 3.6 when ⌧ = 0 the autocorrelation function R
xx

(0) is equal to 1, because

rect(t) = rect(t+0) (1). When ⌧ = T0/2, Rxx

(T0/2) = 1/2 because the rectangles are overlapped

for half (2). At the end (3), when ⌧ = T0 the rectangles are no longer superimposed and

R
xx

(T0) = 0.

If the signal is discrete, like in our case, we have

R
xx

(m) =
1

N

N�m+1X

n=1

f(n)f(n+m� 1) (3.9)

where m is the discrete lag.

We have applied the autocorrelation function to our SVD eigenvectors. Figg. 3.7 - 3.8

show the autocorrelations of eigenvectors u
1

and u
2

obtained from SVD applied to the 100

nm nanodisk traces. Similar results are been obtained with disks of 90 nm. Observing the

eigenvector u
1

, we can infer that it is completely autocorrelated. This is an obvious conclusion,

since it recalls our experimental traces. The autocorrelation values of the other eigenvectors

(included u
2

, see Fig. 3.8) exceed the 95%-confidence bounds for a white noise autocorrelation

at many lags. The oscillation probably is a weak residual of the mechanical oscillation, shown in
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Figure 3.8: The blu line represents the autocorrelation of eigenvector u2 versus lag. In red the 95%-confidence

bounds for a white noise autocorrelation. The autocorrelation values exceed the 95%-confidence bounds for a

white noise autocorrelation at many lags. This weak oscillation probably is an high-frequency electronic noise.

Fig. 3.2.

After this final analysis we can conclude that the first eigenvector u
1

contains all the infor-

mation interesting us.

Eigenvectors analysis and curve fitting

We consider the eigenvectors u
1

for 100 and 90 nanometers disks. Observing the curve in Fig

3.2, it is possible to recognize the two main dynamics to study: the exponential decay due to

the thermal dissipation between the nanodisk and the bulk (nanosecond time scale) and the

mechanical oscillation of the disk, characterized by a period of about tens of ps.

Thermal analysis

To extrapolate the time scales of the the thermal dynamics involved, we fit the eigenvector

u
1

using a linear combination of three exponential:

f(t) = A · exp(�t/⌧1) +B · exp(�t/⌧2) + C · exp(t/⌧3)
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Figure 3.9: The black line represents u1 eigenvector versus delay time. In red the three exponential fit function.

Inset: The same curves in semi-log scale.

Fig. 3.9 reports the eigenvector u
1

and the fit function. The decay times with the 95% confidence

bound for the 90 nm disk are: ⌧1=556 fs (356 , 1270), ⌧2 = 212 ps (166, 292), ⌧3 = 1.22 ns

(1.17, 1.29). For the 100 nm disk are: ⌧1=1090 fs (929 , 1310), ⌧2 = 166 ps (141, 204), ⌧3 = 1.78

ns (1.70, 1.87). The complete coe�cients tables (with the corresponding confidence interval)

are reported in Table C.2 and Table C.1 in Appendix C. For both diameter the value ⌧1 is

confrontable with the e-ph coupling time, ⌧2 and ⌧3 are comparable with thermal relaxation

between the nanodisk and the bulk7

We are now interested in the analysis of fit coe�cients, amplitude and rate of decay, one for

each exponential, for both the nanodisk’s diameter, 90 and 100 nm. In particular, we want to

confront the coe�cients obtained from the analysis of the SVD eigenvectors with those obtained

from the fit of the individual experimental traces, that are shown in Fig 2.13.

Plotting the rates of decay and the amplitudes as represented in Figg. 3.10 - 3.11, we observe

a clear trend to cluster around a certain values, that are the values obtained from the fitting of

7An estimate for the thermal relaxation time between the disk and the substrate is given in the Ronchi’s

Bachelor thesis[12].
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(a) Absolute values of ⌧1 vs ⌧2

(b) Absolute values of ⌧1 vs ⌧3

Figure 3.10: Red markers represent the curve fitting values related to 90 nm single traces, while blue dots

the ones linked to the 100 nm traces. The square markers represent the values (with the corresponding

error bars) obtained from the fitting of SVD eigenvectors.

SVD eigenvectors. This confirms that the SVD eigenvectors represent all the measurements of

the data matrix X.

As we can see, to each value of the SVD eigenvector curve fit are associated the corresponding
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(a) Absolute values of A vs B in semilog scale.

(b) Absolute values of A vs C in semilog scale.

Figure 3.11: Red markers represent the curve fitting values related to 90 nm single traces, while blue dots

the ones linked to the 100 nm traces. The square markers represent the values (with the corresponding

error bars) obtained from the fitting of SVD eigenvectors.

error bars, evaluated from the standard deviation of the measure itself. This uncertainty results

from the process of statistical analysis computed by MATLAB® . It is interesting to note that

the scatter of the points is much bigger than the error on the single SVD value. This means that
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the SVD analysis is a powerful tool to reduce systematic errors. In general, this kind of error

are related to the variation of some experimental variable, like temperature, humidity or laser

fluctuations.

Mechanical analysis

The mechanical oscillations of the disk shown in Fig. 3.2 can be described by the theory of

linear elasticity. An ideal elastic material deforms in proportion to the applied force and recovers

its original size and its state (no damage) when the load is removed (Hooke’s law).

An elastic wave is a mechanical perturbation that propagates through the material causing

oscillations of the particles that constitute it with respect to their equilibrium position. The

real materials di↵er from the ideal model in di↵erent ways but in particular for the dissipation

mechanisms.

In our system an intense pump pulse impulsively delivers to the disk an energy density dU .

From this moment, the physics is well represented by the following three steps. In the first

step, the ultra-short laser pulse heats the electronic gas of the nanodisk. In the second step,

the electronic gas delivers energy to and thermalizes with the lattice. In the last step, the local

increase of temperature dT is responsible for an impulsive expansion of the lattice through the

thermal expansion coe�cient ↵. At this point, (A) the nanodisk thermalizes with the substrate

(B) the impulsive expansion of the disk, that is coupled mechanically with the substrate, excites

a displacement field u(r, t0).

The displacement field, defined as

u(r, t) = r(t)� r(t0)

(where r(t) and r(t0) are respectively the position vectors at time t and t0) is the solution of the

Navier equation

(�+ µ) grad div u+ µr2u = ⇢
@2u

@t2
(3.10)

where � and µ are the Lamé constants of the material forming the object, and ⇢ is its material

density. The initial conditions for the dynamics are defined by the fields u(r, t0) and u̇(r, t0).

The eigenmodes correspond to harmonic solutions of Eq. 3.10:

u(r, t) = u(r) exp (i!̃t) (3.11)
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Figure 3.12: (a) shows the residues of eigenvector u1 versus delay time obtained from the fit represented in Fig.

3.9. In (b) we can see the power spectrum of residual in (a). It is interesting to observe two peaks, corresponding

to the frequency of the two oscillator in (a). These frequencies are comparable with those obtained in Ronchi’s

bachelor thesis[12].

where the vibrational frequencies !̃ are real or complex valued in the case of free and substrate-

coupled nanodisk, respectively. In the coupled case, their imaginary part reflects damping of the

vibration mode by the transfer of mechanical energy to the lattice.

To find the frequencies of the disk’s mechanical oscillations, we compute a Discrete Fourier

Transform (DFT) of the residues of the triple-exponential fit of the eigenvector u
1

. The Fourier

transform relates the function’s time domain to the function’s frequency domain and it is defined

as

f̂(k) =

Z +1

�1
f(x)e�2⇡ik·xdx (3.12)

f̂(x) =

Z +1

�1
f(k)e2⇡ik·xdk (3.13)

The discrete versions of Eqs. 3.12 and 3.13, DFT and iDFT, employ an algorithm called Fast

Fourier Transform (FFT), that computes the discrete summation

F
k

=
NX

n=1

f
n

e�2⇡i(k�1)(n�1)/N , 1  k  N (3.14)
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Figure 3.13: In black: the residual of eigenvector u1 versus delay time up to 500 ps, obtained from the fit

represented in Fig. 3.9. In red: fit curve obtained with the linear combination of two damped sines.

F
k

are the DFT coe�cients of a signal f
n

(with index n = 1, 2, . . . , N). The inverse transform is

given by

f
n

=
1

N

NX

n=1

F
k

e�2⇡i(k�1)(n�1)/N , 1  k  N (3.15)

Our signal is formed by a discrete number of points N , so the frequency resolution of DFT is

�⌫
DFT

=
1

N ·�t
=

1

t
max

(3.16)

where�t and t
max

are the resolution and the temporal window of the measurements, respectively.

An example of residues and the relative power spectrum is shown in Fig. 3.12. From the frequency

values of DFT, it is possible to estimate the period of these mechanical oscillation as the inverse

of frequency. Observing the residues of eigenvector u
1

, we can see that these oscillators are

damped.

To analayze in detail the mechanical oscillations we have fitting the residues of the eigenvector

u
1

with a linear combination of two damped sines (Fig. 3.13):

f(t) = A exp

✓
� t

⌧1

◆
sin

✓
2⇡

T1
t+ �1

◆
+B exp

✓
� t

⌧2

◆
sin

✓
2⇡

T2
t+ �2

◆
(3.17)



3.1 Gold/titanium nanodisks 39

(a) A vs B

(b) T1 vs T2 (c) ⌧1 vs ⌧2

Figure 3.14: Amplitude A, temporal period T and rate of decay ⌧ for the first oscillator versus same co-

e�cients for the second one for each experimental trace. Red markers represent the values corresponding

to the 100 nm gold nanodisks, while blue dots the ones corresponding to the 90 nm.The square markers

represent the values (with the corresponding error bars) obtained from the fitting of residual of SVD

eigenvectors.

As for the thermal analysis, we are interested in fit coe�cients8, amplitude A, temporal period T

and rate of decay ⌧ , for each oscillators of both nanodisk’s diameter. Plotting the fit coe�cients

of each experimental trace in a scatter graph and confronting these with the SVD’s one, we

8The complete coe�cients tables (with the corresponding confidence interval) are reported in Table C.3 and

Table C.4 (see Appendix C).
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obtain the graphs in Fig. 3.14.

Looking at the graphs, we observe that there is a trend to cluster, therefore such a kind

of analysis allows us to distinguish one sample from the other. With respect to the thermal

part, the fit coe�cients of the SVD only partly capture the global trend the measurements, in

particular, the amplitudes A and decays ⌧ . This is easily explained because the amplitude and

the dumping of the oscillations are partly lost in the singular value decomposition.

If we analyze the periods T, the SVD value represents an average of the values for the single

measures. These periods are comparable with both the frequencies extracted from the DFT.

We conclude that the study of the first eigenvectors extracted from the SVD allows us to

analyze the thermomechanical dynamic of this nanosystem.
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3.1.2 Hierarchical cluster analysis

Figure 3.15: Graphical representation of an agglomerative hierarchical clustering algorithm. At the step 0,

all clusters are singletons (clusters containing a single point). At the end (step 6), there is only one big cluster

with seven elements. At each step the numerical solver finds the pair of clusters that leads to minimum increase

in total within-cluster variance after merging. This increase is a weighted squared Euclidean distance between

cluster centers.

In this section, we aggregate the experimental traces contained in the column of matrix X in a

dendrogram, using a hierarchical clustering principle. A dendrogram is a tree diagram frequently

used to illustrate the arrangement of the clusters produced by hierarchical clustering obtained

with algorithms known as linkage rules.

In this work we have used a linkage rule known as “Ward minimum variance method”. This

is an agglomerative method that clusters data with the criterion to minimize the total within-

cluster variance once an appropriate metric has been defined to measure the distance among the

experimental trace.

An example of how the algorithm works is shown in Fig. 3.15. At each step the numerical

solver finds the pair of clusters C
i

and C
j

that leads to minimum increase in total within-cluster

variance after merging. This increase is a weighted squared distance between cluster centroids.

At the initial step, all clusters are singletons (clusters containing a single point). At the end,

there is only one big cluster. To apply a recursive algorithm, we have to define a initial distance

between individual objects. We have chosen a squared Euclidean distance, that for two generic
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Figure 3.16: Hierarchical cluster analysis. Dendrogram obtained using the Ward’s method. The vertical lengths

between nodes are proportional to the linkage distance. In blue: cluster of the 100 nm gold nanodisk’s measures.

In red: cluster of the 90 nm gold nanodisk’s measures.

points x
i

, x
j

is define as

d
ij

= ||x
i

� x
j

||2. (3.18)

For this reason, the linkage distance, or Ward’s linkage, will be defined as

d
ij

= d(C
i

, C
j

) =

s
2n

i

n
j

(n
i

+ n
j

)
||C̄

i

� C̄
j

||2. (3.19)

where C̄
i

,C̄
j

are the centroids of clusters i and j, and n
i

,n
j

are the number of elements in clusters

i and j.

The results of hierarchical clustering are presented in the dendrogram shown in Fig. 3.169.

The data group in two distinct clusters, each associated to one nanodisk’s diameter. Thus, this

algorithm allows us to reveal the internal similarities in our data, in particular, it di↵erentiate

objects in the 100 nm range di↵ering in dimension by less than 10 %. In the next sections, we

will try to use this powerful tool to recognize the di↵erent dilution properties in the nanospheres’

experimental traces.

9The MATLAB® code used to perform this analysis is presented in Appendix B.2.
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3.2 Gold nanospheres

3.2.1 Singular Value Decomposition

Figure 3.17: u1 left eigenvector versus delay time up to 1 ns, extracted from singular value decomposition

applied to nanospheres’ data matrix X. The eigenvector presents the typical exponential decay with a weak

oscillation superposed.

Now we analyze the nanospheres’ traces. In Figg. 3.17 - 3.18 are shown the first two eigen-

vectors (u
1

and u
2

) calculated with SVD, starting from nanospheres’ data matrix X. In this

case the matrix X has 35000 rows and 9 columns.

As we can see the eigenvector u
1

presents the typical exponential decay. Unlike the nanodisks,

the mechanical oscillations are less evident. These oscillations are also present in the second

eigenvector u
2

. Note that a noise of equal amplitude is superposed to this oscillation. The

remaining eigenvectors (u
3

to u
9

) have similar characteristics to the eigenvector u
2

, and are not

shown.

As for nanodisks, we examine the eigenvalues s
k

and the trace projections m
jk

on the eigen-

vectors basis {u
k

}. If the projections and the eigenvalue associated to the single eigenvector

have a relative weight greater than the others, then the corresponding eigenvector will be more

important than others in the data reconstruction.
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Figure 3.18: u2 left eigenvector versus delay time, extracted from singular value decomposition applied to

nanospheres’ data matrix X. The eigenvector u2 presents an oscillation with a noise of same amplitude super-

posed.

In Fig. 3.19 we observe that, for the sample A, the projections of each experimental trace

follow a similar trend. This also applies to the sample E. Therefore, we are able to identify each

sample (i.e. the dilutions of nanoparticles and antibody) studying the trend of these projections.

Given that the traces from each sample have a similar trend, we mediate them to highlight the

two trends. Fig. 3.20 shows eigenvalues and the mean of the absolute value of the coordinates

m
ij

for each nanospheres’ sample and for each eigenvector10.

We consider two samples with di↵erent concentration of nanoparticles and antibody. The sample

A (blue points) has nanoparticles diluted 1:10 with respect to the manufacture’s dilution and

0.1 mg/ml antibody. The sample E (red points) has nanoparticles undiluted with respect to the

10For example, M
k

for sample E traces has been calculated as

M
k

=
1

6

6X

j=1

|m
kj

|.

M
k

for sample A traces has been calculated as

M
k

=
1

3

9X

j=7

|m
kj

|.
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(a) Sample E (b) Sample A

Figure 3.19: a) Histogram of the absolute value of the coordinates for sample E. b) Histogram of the

absolute value of the coordinates for sample A.

Figure 3.20: a) Eigenvalues s
k

in semilogarithmic scale calculated with SVD. b) Histogram of the mean of the

absolute value of the coordinates. The red bars represent the average coordinates for sample A traces. The blue

ones represent the average coordinates for sample E traces.
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Figure 3.21: In this 3D scatter plot each point represents the absolute value of the coordinates (|m1j |, |m2j |,

|m3j |) for a specific trace in the space spanned by the first three eigenvectors (i.e with the highest eigenvalues).

The color code and the numeration is the same of Fig. 2.14. Note that projections from same samples (A and E)

are grouped in clusters.

manufacture’s dilution and 1 mg/ml antibody.

Observing Fig. 3.20, we note that, for sample E, the first eigenvalue s1 and the first projection

M1 are dominant with respect to the others. For sample A, we have similar values for the first

four projections (M1 to M4). This is an interesting result, because the first four eigenvectors

have similar weight in reconstructing the traces of the sample A. Therefore, the projections on

the first two eigenvectors are not su�cient as for the nanodisks. In this case, we have reduced the

data dimensions by projecting the original data into a subspace spanned by the three eigenvectors

with the highest eigenvalues, visualizing the absolute value of these coordinates as points in a 3D

scatter plot. In Fig. 3.21, we identify two clusters, each composed of points corresponding to the

same sample. This is an important result, because such kind of analysis allows us to discriminate

one dilution from the other.

Note that the distance of the trace 6 from the centroid of the blue cluster is greater than the
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Figure 3.22: In these 2D scatter plots each point represents the value of the coordinates (m1j , m2j , m3j) for a

specific trace in the space spanned by the two eigenvectors (i.e m1j vs m2j , m1j vs m3j and m2j vs m3j). The

color code and the numeration is the same of Fig. 2.14. Note that projections are symmetric with respect to the

centroids of the clusters.

average distance of the other traces. This suggests that the measure may be not reliable. In fact,

some fluctuations of the experimental conditions could be a↵ected the measurement. The trace

6 will be removed from the subsequent analysis also in consideration of the dendrogram analysis

(see below).

The choice of representing in Fig. 3.21 the absolute values of the coordinates is due to the

fact that the sign of these projections identifies only a phase factor between the trace and the

eigenvector on which the trace is projected. Indeed, in Fig. 3.22 we observe that the values of

the coordinates (without the absolute value) are symmetric with respect to the centroids of the

clusters.
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Figure 3.23: Autocorrelation of the first three eigenvectors versus temporal lag (sample E). In red the 95%-

confidence bounds for a white noise autocorrelation.

Shannon Entropy

We have calculated the Shannon entropy H(X) on sample A and E. We obtain H(X) = 0.5735

for sample A and H(X) = 0.1846 for sample E. With respect to the nanodisks, both these values

are higher. In particular, the entropy of the sample E is comparable to the nanodisks’ one. The

entropy of the sample A is about five times higher. For this reason it seems to be su�cient only

one eigenvector u
1

to represent the experimental traces of the sample E. We can not say the

same for the sample A, where we need more than one eigenvector.

Eigenvectors autocorrelation

To determine the randomness of our eigenvectors we have calculated the autocorrelation of the

SVD eigenvectors.

Fig. 3.23 shows the autocorrelations of the first three eigenvectors obtained from SVD analysis

and applied to the sample E traces. Similar results are been obtained with the sample A.

Observing Fig. 3.23 we see that the u
1

eigenvector has a high degree of autocorrelation. This is
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Figure 3.24: The black line represents u1 eigenvector versus delay time. In red the three exponential fit function.

an obvious conclusion, since the first eigenvector contains the exponential decay common to all

experimental traces.

The values of the autocorrelation function for the other eigenvectors u
2

and u
3

periodically

exceed the 95%-confidence bounds for a white noise autocorrelation. This oscillation is due to

electronic noise.

After this final analysis we conclude that, for sample E, the thermomechanical dynamics is

contained only in the first eigenvector u
1

. For this sample we are going to follow the same

thermal and mechanical analysis shown in the previous section. For the sample A, we are going

to analyze the thermal dynamics studying the eigenvector u
1

. The mechanical oscillations will

be investigated evaluating the eigenvector u
2

.

Eigenvectors analysis and curve fitting

We consider the eigenvectors u
1

and u
2

for nanospheres’ samples. Observing the curves in Figg.

3.17 - 3.18, it is possible to recognize the two main dynamics: The exponential decay due to the

thermal dissipation between the nanosphere and the surrounding environment (hundred picosec-
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ond - nanosecond time scale) and the mechanical oscillation of the particle, characterized by a

period of tens of ps.

Thermal analysis

To extrapolate the time scales of the the thermal dynamics involved, we fit the eigenvector

u1 using a linear combination of three exponential:

f(t) = A · exp(�t/⌧1) +B · exp(�t/⌧2) + C · exp(t/⌧3)

Fig. 3.24 reports the eigenvector u
1

and the fit function. The decay times with the 95%

confidence bound for sample A are: ⌧1=929 fs (890, 971), ⌧2 = 72.6 ps (71.1, 74.3), ⌧3 = 1.68 ns

(1.23, 2.66). For sample E we have obtained: ⌧1=1250 fs (1230, 1270), ⌧2 = 78.0 ps (77.3, 78.7),

⌧3 = 1.50 ns (1.41, 1.59). The complete coe�cients tables (with the corresponding confidence

interval) are reported in Table C.5 and Table C.6 (see Appendix C)11 . For both samples, the

value ⌧1 is similar to the e-ph coupling time, ⌧2 and ⌧3 are comparable with the typical time

scales of the thermal relaxation between the nanoparticle and the environment.

We now analyze the fit coe�cients, amplitude and rate of decay, one for each exponential,

for both the nanospheres’ samples. First of all, we compare the coe�cients obtained from the

analysis of the SVD eigenvectors with those obtained from the fit of the individual experimental

traces, that are shown in Fig 2.14. In second instance, we verify if the di↵erent diluition of the

nanoparticles can in some way be a discriminating factor for our measurements, in other words

if more or less high concentration of particle influence the thermal dynamics of the sample.

Plotting the rates of decay and the amplitudes as represented in Figg. 3.25 - 3.26, we observe a

trend to cluster around the values obtained from the fitting of SVD eigenvectors, for both samples.

This confirms that the SVD eigenvectors represent on the average the overall measurements.

However, there is no evidence of a connection between the amplitudes and rates of decay with

the diluition of nanoparticles on the sample. The projection of the experimental traces into a

sub-space spanned by the first three eigenvectors allows a more clearly identification of the two

dilutions. (Fig. 3.21)

11These fit coe�cients are comparable with those presented in Bianchetti’s Bachelor thesis[15].
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(a) Absolute values of ⌧1 vs ⌧2

(b) Absolute values of ⌧1 vs ⌧3

Figure 3.25: Red markers represent the curve fitting values related to sample A traces, while blue dots

the ones related to the sample E. The square markers represent the values (with the corresponding error

bars) obtained from the fitting of SVD eigenvectors.

As we can see, to each value of the SVD eigenvector curve fitting are associated the corre-

sponding error bars, evaluated from the standard deviation of the measure itself. This uncertainty

results from the process of statistical analysis followed by MATLAB® . It is interesting to note
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(a) Absolute values of A vs B.

(b) Absolute values of A vs C.

Figure 3.26: Red markers represent the curve fitting values related to sample A traces, while blue dots

the ones related to the sample E. The square markers represent the values (with the corresponding error

bars) obtained from the fitting of SVD eigenvectors.

that the scatter of the points is much bigger than the error on the single SVD value.

This means that the SVD analysis is a powerful tool to reduce systematic errors. In general,

this kind of error are related to the variation of some experimental variable, like temperature,
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humidity or laser fluctuations.

Mechanical analysis

We solve numerically the Navier equation (Eq. 3.10) in the particular case of a gold nanosphere.

We assume that our material is homogeneous and isotropic (i.e., polycrystalline) and we consider

an object with spherical symmetry, that is formed by a spherical core of radius R, embedded in

an infinite matrix that constitutes the external environment. This infinite matrix simulates the

coupling of the nanoparticle with the substrate through the streptavidin-biotin bonding. The

spherical symmetry of the system ensures that the displacement field spatially depends only on

the radial coordinate r, u(r, t) = u(r, t) u
r

. The Navier equation becomes

⇢
d2u

dt2
= (�+ 2µ)


d2u

dr2
+

2

r

du

dr
� 2u

r2

�
(3.20)

This equation depends only on the radial coordinate r.

As for the nanodisks, the eigenmodes correspond to harmonic solutions of radial Navier equa-

tion:

u(r, t) = u(r) exp (i!̃t) (3.21)

where the vibrational frequencies !̃ are real or complex valued in the case of free and matrix-

embedded particles, respectively. In the matrix case, their imaginary part reflects damping of

the vibration mode due to the transfer of mechanical energy to the matrix. As for a macroscopic

resonator, the properties of vibrational eigenmodes (i.e., their frequency !̃ and displacement field

u(r)) are thus imposed by the boundary conditions, that is continuity of the displacement and of

the radial component of the stress tensor �
rr

at the nanoparticle-matrix interface. For a radial

mode, �
rr

is connected to the field u(r, t) by

�
rr

= (�+ 2µ)
du

dr
+ 2�

u

r
(3.22)
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Figure 3.27: Example of a free pure gold nanosphere.

For a free sphere (Figure 3.27), the boundary condition is given by

�
rr

(R) = 0 (3.23)

where R is the particle’s radius.

Eigenfrequencies are given by

⇠ cot ⇠ = 1� ⇠2

4

✓
C

L

C
T

◆2

with ⇠ =
!R

C
T

(3.24)

In Eq. 3.24, C
L

and C
T

stand for longitudinal and transversal velocity of sound in the specific

material12, respectively. If we suppose that the nanoparticle is embedded in an infinite matrix,

as schematically shown in Fig. 3.28, the Navier equation becomes

⇠ cot ⇠ = 1� ⇠2(1 + i⇠/↵)

⌘⇠2 � 4↵2�2(1� 1/⌘�2)(1 + i⇠/↵)
(3.25)

with

↵ = C(m)
L

/C(c)
L

, � = C(m)
T

/C(c)
T

, � = C(m)
T

/C(m)
L

, ⌘ = ⇢(m)/⇢(c)

Evaluating the e↵ect of the external environment, there is a weak modification of vibration

frequencies, that become lower because of the presence of a matrix around the particle. As we

12For the value of constants, see [22]
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Figure 3.28: Gold nanosphere embedded in a matrix.

will see soon, this is a tiny di↵erence and can be neglected. In this case, the eigenmodes of the

nanoparticle are no longer exactly eigenmodes, but quasi-steady states, that is particle’s modes

subject to a damping.

We have found numerically the eigenfrequencies, solving graphically Eqs. 3.24 - 3.25 for ⇠
n

.

The graphic solution is represented in Fig. 3.29. Knowing that ! = 2⇡⌫, eigenfrequencies are

calculated as

⌫ =
⇠ · C

L

2⇡R
(3.26)

For a sphere of 20 nm of radius (i.e. the nominal radius of our nanoparticles) the frequencies

⌫, corresponding to the fundamental breathing mode and to the first eigenmodes, n = 0 and

n = 1 respectively, are

⌫0 = 75.93 GHz for n = 0

⌫1 = 159.7 Ghz for n = 1

for the model with free particle, and

⌫0 = 75, 89 GHz for n = 0

⌫1 = 159.7 GHz for n = 1

for the matrix-embedded one’s.

As we have done for the nanodisks, now we compare these frequencies with the frequencies

of particle’s mechanical oscillations obtained analyzing the SVD eigenvectors. For sample E, we

have computed a Fast Fourier Transform (FFT) of the residual between eigenvector u
1

and the
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Figure 3.29: Graphical representation of functions ⇠ cot ⇠ (red trace), 1� ⇠

2

4

�
CL
CT

�2
(blue continuos line)

and real part of 1 � ⇠

2(1+i⇠/↵)
⌘⇠

2�4↵2
�

2(1�1/⌘�2)(1+i⇠/↵)
(blue dashed line) . The values of ⇠ are given by the

intersection points. As we can see, there is a minimal di↵erence between the two solutions.

triple-exponential fit performed. For sample A, the FFT is been directly calculated on eigenvector

u
2

.

In Fig. 3.30 is shown the residual of eigenvector u
1

and its power spectrum. In a similar

way, in Fig. 3.31 is reported the eigenvector u
2

and its power spectrum. Only one frequency

(around 68 GHz) obtained from the DFT is comparable with those obtained solving the Navier

equation. For this reason, we assume that the oscillations in the residual of eigenvector u
1

(i.e.,

sample E) are due to the excitation of the first eigenmode of a single nanosphere. We can infer

similar conclusion for the sample A.

As for the nanodisks, we have performed a fit using a linear combination of two damped sines:

f(t) = A exp

✓
� t

⌧1

◆
sin

✓
2⇡

T1
t+ �1

◆
+B exp

✓
� t

⌧2

◆
sin

✓
2⇡

T2
t+ �2

◆
(3.27)

In Fig. 3.32 is reported the mechanical fit of the residual of eigenvector u
1

for sample E. In Fig.
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Figure 3.30: (a) shows the residual of eigenvector u1 versus delay time for the sample E, obtained from the

fit represented in Fig. 3.24. In (b) we can see the power spectrum of (a). We can observe three peaks (6.7, 12.5

and 68 GHz). At the two DFT peaks with higher frequencies correspond the two oscillators in (a). Only one

frequency (68 GHz) is comparable with those obtained solving the Navier equation (Eq. 3.20).

Figure 3.31: (a) shows the eigenvector u2 versus delay time for the sample A. In (b) we can see the power

spectrum of (a). The eigenvector u2 is more noisy with respect to the residual of eigenvector u1 and so we have

many peaks in DFT. The important thing is that in (b) are also present all the frequencies that appear in Fig.

3.30 (b).
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Figure 3.32: In black: the residual of eigenvector u1 versus delay time up to 350 ps for sample E. In red: fit

curve obtained with the linear combination of two damped sines.

Figure 3.33: In black: eigenvector u2 versus delay time up to 350 ps. In red: fit curve obtained with the linear

combination of two damped sines.
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(a) A vs B

(b) T1 vs T2 (c) ⌧1 vs ⌧2

Figure 3.34: Amplitude A, temporal period T and rate of decay ⌧ for the first oscillator versus same

coe�cients for the second one for each experimental trace. Red markers represent the values correspond-

ing to the sample A, while blue dots the ones corresponding to the sample E. The red square marker

represents the value (with the corresponding error bars) obtained from the curve fitting of residual of

eigenvector u1. The blue square marker represents the value (with the corresponding error bars) obtained

from the curve fitting of eigenvector u2.

3.33 is shown the mechanical fit of the eigenvector u
2

for sample A. As for the thermal analysis,

we are interested in fit coe�cients13, amplitude A, temporal period T and rate of decay ⌧ , for

each oscillators of both dilutions sample. Plotting the fit coe�cients of each experimental trace

13The complete coe�cients tables (with the corresponding confidence interval) are reported in Table C.7 and

Table C.8 (see Appendix C).
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in a scatter plot and confronting these with the SVD’s one, we obtain the graphs in Fig. 3.34.

Looking at the graphs, we can infer that it is not possible to identify a real trend to cluster,

therefore such a kind of analysis does not allow us to distinguish one sample from the other. The

projection of the experimental traces into a sub-space spanned by the first three eigenvectors

allows a more clearly identification of the two dilutions. (Fig. 3.21)

With respect to the thermal part, the fit coe�cients of the SVD only partly capture the

global trend of the measurements. In particular, the amplitudes A and decays ⌧ . This is easily

explained, the amplitude and the dump of the oscillations are partly lost in the singular value

decomposition. Furthermore, a fit that is a linear combination of two damped sines is more

sensitive than a linear combination of exponentials. In fact, the data analysis program has to

find the right combination of phases.

If we analyze the periods T1 and T2, the SVD value represent an average of the values for

the single measures. These periods are comparable with the frequencies of the DFT and, in

particular T1, with the numerical solution of the Navier equation.

We conclude that the study of the first eigenvectors extracted from the SVD allows us to

analyze the thermomechanical dynamic of this nanosystem.
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3.2.2 Hierarchical cluster analysis

Figure 3.35: Hierarchical cluster analysis. Dendrogram obtained using the Ward’s method. The vertical

lengths between nodes are proportional to the linkage distance. In blue: cluster related to pure gold nanoparticles

measures (i.e., sample E). In red: cluster linked to the sample with 1:10 diluition (i.e, sample A).

The result of hierarchical clustering applied to the nanospheres’ measurements is presented in

the dendrogram shown in Fig. 3.3514. The data group in two distinct clusters, each associated to

a single dilution. Thus, this algorithm allows to reveal the internal similarities in the experimental

data, in particular, it is able to distinguish the di↵erent dilutions of our samples.

Observing Fig. 3.35, we can infer two important conclusions. First of all, the cluster associ-

ated to the sample E has a linkage distance smaller with respect to the sample A one’s. Therefore,

the blue traces are more similar among them than the red one’s. This fact has already been ob-

served considering the value of Shannon entropy. For sample E the Shannon entropy was smaller

than the sample A. This confirms the e�cacy of the mathematical tools used in this works.

The second observation is that the trace 6 do not cluster. For this reason, trace 6 has been

excluded from the analysis.

14The MATLAB® code used to perform this analysis is presented in Appendix B.2.
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In conclusion, with this hierarchical cluster analysis we are able to evidence small di↵erences

in the experimental traces. These di↵erences reflect changes in the physical properties of the

system. Therefore, analyzing these di↵erences in the data, we can also able to study the physics

of the system.



Chapter 4

Conclusions and future

perspectives

The aim of this thesis is extract useful information about thermomechanical dynamics of complex

systems through a Singular Value Decomposition (SVD) analysis and a hierarchical binary cluster

tree dendrogram, starting from single nano-object time-resolved optical measurements. First of

all, these statistical tools have been applied to a well-known system like gold/titanium nanodisks

made by electronic beam lithography. For such system an analytical model for the thermal

dynamics has already been developed. Studying the gold nanodisks we have optimized the

mathematical and numerical platform. Next, we have investigated a more complex biological

object like gold nanoparticles immobilized on a functionalized surface through the strong chemical

bond between biotin and streptavidin.

For both these samples, we have reduce the data dimensions by projecting the original data

into a subspace spanned by the eigenvectors with higher relative weight. In this way we have

been able to identify tiny di↵erences in the experimental traces, like the diameter’s size for the

nanodisks or the dilution for the nanoparticles’ samples. Similar results have been obtained

with the hierarchical cluster analysis. We also studied the thermal and mechanical dynamics of

these nano-objects, starting from the analysis of SVD eigenvectors. For the thermal dynamic,

we obtain informations about amplitude and rate of decay of exponentials.

Afterwards, the study of mechanical dynamics has been presented, obtaining the oscillation
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periods and the corresponding relaxation times. We have estabilished that the frequencies ob-

tained from the SVD analysis and the theoretical values given by solving the Navier equation are

comparable. Confronting the fit coe�cients related to SVD eigenvectors with those obtained by

a standard analysis, we have shown that SVD provides a global analysis, that is able to capture

the dynamics of our systems.

Although these analysis allow us to make interesting considerations, there are some aspects

that can be improved in the future. First of all, it would be interesting to characterize the

nanospheres’ samples performing a TEM1 imaging. Then, it would be interesting to increment

the number of measurements analyzed. In this way we would be able to consolidate the technique

results for further applications.

In the next future, the SVD analysis could be implemented as a pre-analysis platform, having

demonstrated that is able to evidence those measures a↵ected by casual or systematic errors.

1Transmission Electron Microscope.
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Electronics and devices

A.1 High-speed Photodetector

Let’s describe the characteristics of electronic devices used for data acquisition. The Balanced

Amplified Photodetector Thorlabs PDB430A is characterized by two channels, reason why we

define it as di↵erential photodetector. Both the ASOPS system and the technique adopted re-

quire this kind of detector in order to acquire the signal di↵erence between the intensity of the

transmitted and the reference beam. The technical specifications of these devices satisfy the

needed requirements. In particular, we need an high temporal resolution and a low noise.

A.1.1 Di↵erential Photodetector: PDB430A

Thorlabs PDB4xx series Balanced Amplified Photodetectors consist of two well-matched photo-

diodes and an ultra-low noise, high-speed transimpendance amplifier that generates an output

voltage (RF OUTPUT) proportional to the di↵erence between the photocurrents in the two

photodiodes, i.e. the two optical input signals. Additionally, the unit has two monitor outputs

(MONITOR+ and MONITOR-) to observe the optical input power levels on each photodiode

separately.

Figure A.1 shows a functional block diagram of the PDB4xx series balanced amplified photode-

tectors.

The PDB4xx series is powered by external power supply (±12 V , 200 mA). The main features
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of photodetector are related in Tables A.1 and A.2. Table A.1 lists common technical data of

the PDB4xx series, while Table A.2 lists the individual features of Thorlabs PDB430A. To avoid

damaging the photodiodes, it is important to monitor beams’ intensity.

Figure A.1: PDB4xx Series Functional block diagram
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Common Technical Data - PDB4xx Series

Max. Input Power 20 mW (photodiode damage threshold)

RF-Output Impendance 50 ⌦

RF OUTPUT voltage swing, max. ± 3.6 V (high impendance load)

Monitor Output Impendance 220 ⌦

Monitor Output Bandwidth DC 1 MHz

Conversion Gain Monitor Outputs 10 V/mW @ peak responsivity

Monitor Output voltage noise 180 µV RMS

DC-o↵set MONITOR Outputs ¡ ± 2 mV

Size 85x80x30 mm3

Power Supply ± 12 V, 200 mA

Table A.1: Common features of PDB4xx Series. All technical data are given at 23 ± 5 �C and

35 ± 15% relative humidity.

Individual Technical Data - Thorlabs PDB430A

Detector Material/Type Si / PIN

Wavelenght Range 320 nm - 1000 nm

Typical Max. Responsivity 0.5 A/W

Detector Diameter 0.4 mm

RF-Output Bandwidth (3dB) DC - 350 MHz

Transimpendance Gain 10 x 103 V/A

Conversion Gain RF-Output 5x103 V/W

CW Saturation Power 720 µW @ 820 nm

Overall output voltage noise 1.5 mV RMS

Table A.2: Individual features of Thorlabs PDB430A
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Appendix B

Matlab Codes

B.1 SVD

In this appendix is shown the MATLAB® code for the singular value decomposition analysis

performed in this thesis work.

1 clear

2 clc

3 close all

4

5 addpath(genpath('/your data path/Misure Ns bio.txt'))

6 load('/your data path/Misure Ns bio.txt')

7

8 M=Misure Ns bio; % Data Matrix

9

10 t=100.* (1:length(M(:,12)))*1e-6; %time scaling in ns

11 deltat=100*1e-6; %delta t in ns

12

13 Au1D=M(:,7);

14 Au2D=M(:,8);

15 Au3D=M(:,9);

16

17

18 X=M(:,(7:9));
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19

20 d=length(X(1,:));

21 floor=mean(X(1:1500,:));

22

23 % normalize

24 X2=[];

25 for nn=1:d

26 X1=X(:,nn)-floor(nn);

27 X2=[X2,X1];

28 end

29 X=X2;

30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32

33 [mm,ii]=max(X);

34

35 X2=[];

36 X1=[];

37 for nn=1:d

38

39 X1=X(ii(nn):(ii(nn)+35000-1),nn)/mm(nn);

40 X2=[X2,X1];

41 end

42 X=X2;

43

44 % decimation points

45

46 N dcm=35000;

47 N points=35000;

48 dcm=round(N points/N dcm);

49

50 X d=[];

51 for nn=1:d

52 X x=decimate(X(:,nn),dcm,4);

53 X x=X x/max(X x);

54 X d=[X d,X x];

55 end

56

57 t d=cumsum(ones(N dcm,1))*(N points*deltat)/N dcm; %in ns



B.1 SVD 71

58

59 %%%%%%%%%%%%%%%%%%%%%% SVD %%%%%%%%%%%%%%%%%%%%%%%%%%%

60

61 [U,S,V] = svd(X d,0);

62

63 %population matrix or principal components scores

64

65 M=S*V.';

66

67

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69

70 % Eigenvectors plots

71

72 figure(1)

73

74 subplot(231)

75 plot(t d,X d)

76 grid on

77

78 subplot(232)

79 semilogy(diag(S)/max(diag(S)),'o','MarkerSize',6,'MarkerFaceColor','b')

80 grid on

81 axis([0 20 1e-2 1])

82

83 subplot(233)

84 plot(V(:,1:2).')

85 grid on

86

87 subplot(234)

88 plot(t d,U(:,1))

89 grid on

90 title('U1')

91

92 subplot(235)

93 plot(t d,U(:,2))

94 grid on

95 title('U2')

96
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97 subplot(236)

98 plot(t d,U(:,3))

99 grid on

100 title('U3')

101

102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

103

104 %Coordinates Plots

105

106 figure(2)

107

108 subplot(131)

109 ll1=1;

110 ll2=2;

111

112 labels = cellstr(num2str([1:3]'));

113 plot(M(ll1,1:3).',M(ll2,1:3).','or','MarkerSize',5,'MarkerFaceColor','r')

114 text(M(ll1,1:3).', M(ll2,1:3).', labels,'FontSize',10,'Color','r',...

115 'FontWeight','bold','VerticalAlignment',...

116 'bottom','HorizontalAlignment','right')

117 grid on

118 hold on

119

120

121 axis equal

122 hold off

123 xlabel('M1')

124 ylabel('M2')

125

126 subplot(132)

127 ll1=1;

128 ll3=3;

129

130 labels = cellstr(num2str([1:3]'));

131 plot(M(ll1,1:3).',M(ll3,1:3).','or','MarkerSize',5,'MarkerFaceColor','r')

132 text(M(ll1,1:3).', M(ll3,1:3).', labels,'FontSize',10,'Color','r',...

133 'FontWeight','bold','VerticalAlignment',...

134 'bottom','HorizontalAlignment','right')

135 grid on
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136 hold on

137

138 axis equal

139 hold off

140 xlabel('M1')

141 ylabel('M3')

142

143 subplot(133)

144 ll2=2;

145 ll3=3;

146

147 labels = cellstr(num2str([1:3]'));

148 plot(M(ll2,1:3).',M(ll3,1:3).','or','MarkerSize',5,'MarkerFaceColor','r')

149 text(M(ll2,1:3).', M(ll3,1:3).', labels,'FontSize',10,'Color','r',...

150 'FontWeight','bold','VerticalAlignment',...

151 'bottom','HorizontalAlignment','right')

152 grid on

153 hold on

154

155 axis equal

156 hold off

157 xlabel('M2')

158 ylabel('M3')

159

160 %%%%%%%%%%%%%%%%%%%%%%%%%%% Fit 3 exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

161

162 Signal2=-U(:,1)/max(-U(:,1));

163

164 cut time=3.5; %Cutting time in ns

165 for nn = 1:length(t d)

166 tdCalc(nn) = abs(t d(nn) - cut time);

167 end

168 [idx idx]=min(tdCalc);

169 Signal2=Signal2(1:idx,1);

170 t d cut3=t d(1:idx,1);

171

172 s = fitoptions('Method','NonlinearLeastSquares',...

173 'Startpoint',[0.9 -1000 0.5 -10 0.2 -1]);

174 f = fittype('a*exp(b*x)+c*exp(d*x)+e*exp(f*x)','options',s);



74 Matlab Codes

175

176 [SS fit 3exp,gof,output] = fit(t d cut3,Signal2,f)

177

178 cc3=coeffvalues(SS fit 3exp);

179

180 S fit 3exp=cc3(1)*exp(cc3(2)*t d cut3)+cc3(3)*exp(cc3(4)*t d cut3)...

181 +cc3(5)*exp(cc3(6)*t d cut3);

182 tau1=abs(1/cc3(2));

183 tau2=abs(1/cc3(4));

184 tau3=abs(1/cc3(6));

185 tau3exp=[tau1 tau2 tau3]

186

187 Res3=Signal2-S fit 3exp;

188

189 figure(3)

190 subplot(311)

191 plot(SS fit 3exp,t d cut3,Signal2,'-k','fit')

192 grid on

193 title('Fit-3exp')

194 xlabel('Delay time [ns]')

195 ylabel('Signal [a.u.]')

196

197 subplot(312)

198 plot(t d cut3,Res3)

199 grid on

200 title('residui-3exp')

201 xlabel('Delay time [ns]')

202 ylabel('Residual [a.u.]')

203

204 %%%%%%%%%%%%%%%% Fourier transform Res U1 %%%%%%%%%%%%%%%%%%

205

206 N=length(t d cut3);

207 deltat=mean(diff(t d cut3)); %in ns

208 Fs=1/deltat;

209 NFFT = 2ˆnextpow2(10*N);

210

211 df=Fs/NFFT; %in GHz

212 f=df*(1:NFFT);

213
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214 NFFT = 2ˆnextpow2(10*N);

215 Res3 f = fft(detrend(Res3),NFFT);

216

217 mss Res3 f=abs(Res3 f).ˆ2/Nˆ2;

218

219 %%%%%%%% Plot %%%%%%%%%%%%%%

220

221 subplot(313)

222 plot(f,mss Res3 f)

223 v=axis;

224 xlim([0 100]);

225 title('Signal Amplitude Spectrum of Res3')

226 xlabel('Frequency [GHz]')

227 ylabel('Power spectrum')

228 grid on

229

230 %%%%%%%%%%%%%%%%%%%%%%%%%%% Fit 2 seni smorzati %%%%%%%%%%%%%%%%%%%%%%%%%%%

231 cut time=0.350; %Cutting time in ns

232 for ii = 1:length(t d)

233 tdCalc(ii) = abs(t d(ii) - cut time);

234 end

235 [idx idx]=min(tdCalc);

236 U2=U(1:idx,2);

237 t d cut4=t d(1:idx,1);

238

239 SU2=smooth(U2,5,'rlowess');

240

241

242 s = fitoptions('Method','NonlinearLeastSquares',...

243 'Startpoint',[0.02 -5 65 +pi/2 0.02 -5 13 -pi/2 0]);

244 f = fittype('a*exp(b*x)*sin(2*pi*c*x+d)+f*exp(g*x)*sin(2*pi*h*x+l)+s',...

245 'options',s);

246

247 [SS fit 2sin,gof,output] = fit(t d cut4,SU2,f)

248

249 cc3=coeffvalues(SS fit 2sin);

250

251 S fit 2sin=cc3(1)*exp(cc3(2)*t d cut4).*sin(2*pi*cc3(3)*t d cut4+cc3(4))...

252 +cc3(5)*exp(cc3(6)*t d cut4).*sin(2*pi*cc3(7)*t d cut4+cc3(8))+cc3(9);
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253 T1=abs(1/cc3(3));

254 T2=abs(1/cc3(7));

255

256 T2sin=[T1 T2]

257

258 figure(4)

259

260 plot(SS fit 2sin,t d cut4,SU2,'-k','fit')

261 grid on

262 title('Fit-2sin')

263 xlabel('Delay time [ns]')

264 ylabel('Residual [a.u.]')

265 hold on

266

267 %%%%%%%%%%%%%%%% Fourier transform U2 %%%%%%%%%%%%%%%%%%

268 signal=U(:,2);

269

270 cut time=0.5; %Cutting time in ns

271 for nn = 1:length(t d)

272 tdCalc(nn) = abs(t d(nn) - cut time);

273 end

274 [idx idx]=min(tdCalc);

275 signal1=signal(1:idx,1);

276 t d cut=t d(1:idx,1);

277

278

279 N=length(t d cut);

280 deltat=mean(diff(t d cut)); %in ns

281 Fs=1/deltat;

282 NFFT = 2ˆnextpow2(10*N);

283

284 df=Fs/NFFT; %in GHz

285 f=df*(1:NFFT);

286

287 NFFT = 2ˆnextpow2(10*N);

288 U1 f = fft(detrend(signal1),NFFT);

289

290 mss U1 f=abs(U1 f).ˆ2/Nˆ2;

291
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292 %%%%%%%% Plot %%%%%%%%%%%%%%

293

294 figure(5)

295 subplot(212)

296 plot(f,mss U1 f)

297 v=axis;

298 title('Signal Amplitude Spectrum of U2')

299 xlabel('Frequency [GHz]')

300 ylabel('Power spectrum')

301 xlim([0 100])

302 grid on

303

304 subplot(211)

305 plot(t d cut,signal1,'k')

306 xlabel('Delay Time [ns]')

307 ylabel('Signal [a.u.]')

308 grid on

309

310

311 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Autocorrelation %%%%%%%%%%%%%%%%%%%%%%%%%%%

312

313 figure(6)

314

315 for ii=1:3

316 [xc,lags] = xcorr(U(:,ii),5000,'coeff');

317

318 conf99 = sqrt(2)*erfcinv(2*.05/2);

319 lconf = -conf99/sqrt(length(t d));

320 upconf = conf99/sqrt(length(t d));

321

322

323 subplot(3,1,ii)

324

325 stem(lags,xc,'filled')

326 ylim([lconf-0.4 1.05])

327 hold on

328 plot(lags,lconf*ones(size(lags)),'r','linewidth',2)

329 plot(lags,upconf*ones(size(lags)),'r','linewidth',2)

330 title(['Eigenvector U ' num2str(ii) ' Autocorrelation (95% C.I.)'])
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331 xlabel('Lag')

332 ylabel('Autocorrelation')

333 end
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B.2 Hierarchical cluster analysis

In this appendix is shown the MATLAB® code for the Hierarchical cluster analysis performed

in this thesis work.

1 close all

2

3 addpath(genpath('/your data path/Misure Ns bio.txt'))

4 load('/your data path/Misure Ns bio.txt')

5

6 M=Misure Ns bio; % Data Matrix

7

8 t=100.* (1:length(M(:,12)))*1e-6; %time scaling in ns

9 deltat=100*1e-6; %delta t in ns

10

11 Au1D=M(:,7);

12 Au2D=M(:,8);

13 Au3D=M(:,9);

14

15

16 X=M(:,(7:9));

17

18 %%%%%%%%%%%%%%%% Dendrogram %%%%%%%%%%%%%%%%%%

19

20 distance=pdist(X.');

21 dendo=linkage(distance,'ward');

22

23

24 figure (5)

25 subplot(121)

26 plot(dendo(:,3,:),'ob','MarkerSize',9,'MarkerFaceColor','b')

27 title('Clustering schedule graph')

28 xlabel('step')

29 ylabel('linkage distance')

30 v=axis;

31 %axis([v(1) v(2) 0 19])

32

33
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34 subplot(122)

35 dendrogram(dendo,'colorthreshold','default')

36 v=axis;

37 %axis([v(1) v(2) 0 15])

38 xlabel('sample number')

39 hold on
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Tables of curve fit coe�cients

Gold Nanodisks: Thermal analysis

trace number ⌧1 [fs] ⌧2 [ps] ⌧3 [ns] A [a.u.] B [a.u.] C [a.u.]

1 1400 (1041, 2160) 166 (126, 244) 2.17 (1.95, 2.44) 1.23 (0.79, 1.67) 0.14 (0.12, 0.16) 0.28 (0.26, 0.29)

2 519 (324, 1290) 125 (77, 321) 1.44 (1.34, 1.56) 4.38 (0.79, 9.54) 0.08 (0.05, 0.10) 0.29 (0.27, 0.30)

3 780 (554, 1320) 133 (83, 347) 1.42 (1.31, 1.55) 2.36 (0.99, 3.73) 0.07 (0.05, 0.10) 0.27 (0.25, 0.29)

4 1730 (1447, 1478) 195 (165, 239) 2.51 (2.31, 2.75) 1.11 (0.90, 1.31) 0.16 (0.14, 0.17) 0.27 (0.26, 0.29)

5 966 (680, 1670) 178 (115, 394) 1.48 (1.34, 1.67) 1.76 (0.85, 2.68) 0.10 (0.07, 0.12) 0.29 (0.26, 0.31)

SVD 1090 (929, 1310) 166 (141, 204) 1.78 (1.70, 1.87) 1.56 (1.25, 1.86) 0.11 (0.10, 0.12) 0.28 (0.27, 0.29)

Table C.1: Values of amplitude and rate of decay, one for each exponential, obtained from the fit of the

measurements performed on the 100 nm nanodisk. In round brackets, the corresponding 95% confidence

interval.

trace number ⌧1 [fs] ⌧2 [ps] ⌧3 [ns] A [a.u.] B [a.u.] C [a.u.]

6 420 (230, 2430) 294 (203, 530) 1.32 (1.18, 1.50) 5.07 (-5.06, 15.20) 0.13 (0.08, 0.19) 0.40 (0.34, 0.45)

7 122 (-8.4e-8, 8.4e-8) 161 (103, 368) 1.14 (1.06, 1.23) 174 (-2e6, 2e6) 0.14 (0.10, 0.18) 0.54 (0.50, 0.58)

8 826 (542, 1730) 300 (217, 483) 1.35 (1.20, 1.55) 1.48 (0.42, 2.54) 0.18 (0.12, 0.23) 0.42 (0.35, 0.48)

9 752 (431, 2960) 169 (119, 294) 1.22 (1.15, 1.30) 1.52 (-0.14, 3.18) 0.13 (0.10, 0.16) 0.50 (0.47, 0.53)

SVD 556 (356, 1270) 212 (166, 292) 1.22 (1.17, 1.29) 2.41 (-0.11, 4.93) 0.13 (0.11, 0.16) 0.48 (0.45, 0.50)

Table C.2: Values of amplitude and rate of decay, one for each exponential, obtained from the fit of the

measurements performed on the 90 nm nanodisk. In round brackets, the corresponding 95% confidence

interval.
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Gold Nanodisks: Mechanical analysis

trace number ⌧1 [ps] ⌧2 [ps] T1 [ps] T2 [ps] A [a.u.] B [a.u.]

1 460 (264, 580) 245 (121, 366) 58.2 (57.3, 59.1) 125 (116, 135) 0.05 (0.03, 0.07) 0.03 (0.01, 0.05)

2 1311 (503, 2155) 3773 (329, 3.9e5) 54.3 (53.8, 54.9) 102 (98, 107) 0.04 (0.03, 0.05) 0.017 (0.004, 0.030)

3 572 (339, 733) 1430 (360, 3.9e3) 54.8 (54.2, 55.4) 100 (97, 103) 0.05 (0.04, 0.07) 0.02 (0.01, 0.04)

4 955 (536, 1107) 549 (288, 782) 65.8 (65.3, 66.4) 118 (114, 123) 0.04 (0.03, 0.05) -0.02 (-0.04, -0.02)

5 2452 (650, 7442) 313 (154, 463) 54.6 (54.1, 55.2) 102 (97, 108) -0.04 (-0.06, -0.03) -0.03 (-0.06, -0.01)

SVD 389 (285, 609) 88 (60, 162) 54.6 (54.2, 55.1) 117 (107, 129) 0.04 (0.03, 0.05) -0.05 (-0.06, -0.03)

Table C.3: Values of amplitude, rate of decay and period, one for each damped sine, obtained from the

fit of the measurements performed on the 100 nm nanodisk. In round brackets, the corresponding 95%

confidence interval.

trace number ⌧1 [ps] ⌧2 [ns] T1 [ps] T2 [ps] A [a.u.] B [a.u.]

6 335 (244, 535) 2.46 (-0.41, 11.31) 53.3 (52.8, 53.8) 96 (93, 99) -0.07 (-0.09, -0.06) -0.02 (-0.03, -0.01)

7 453 (243, 627) 1.99 (-0.21, 13.51) 53.0 (52.1, 53.0) 101 (96, 107) -0.07 (-0.09, -0.04) -0.024 (-0.047, -0.001)

8 364 (243, 570) 0.92 (-0.34, 1.22) 52.9 (52.4, 53.3) 93 (91, 96) -0.08 (-0.10, -0.07) -0.02 (-0.04, -0.02)

9 364 (269, 733) 8.26 (-0.38, 169.43) 52.2 (51.8, 52.8) 91 (88, 95) -0.08 (-0.10, -0.06) -0.02 (-0.04, -0.01)

SVD 393 (890, 971) 1.88 (-0.50, 1.08) 52.8 (52.4, 53.1) 95 (93, 97) 0.078 (0.067 0.089) -0.022 (-0.031 -0.013)

Table C.4: Values of amplitude, rate of decay and period, one for each damped sine, obtained from the

fit of the measurements performed on the 90 nm nanodisk. In round brackets, the corresponding 95%

confidence interval.
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Gold Nanosferes: Thermal analysis

trace number ⌧1 [fs] ⌧2 [ps] ⌧3 [ns] A [a.u.] B [a.u.] C [a.u.]

1 907 (863, 954) 82 (81, 84) 2.09 (1.88, 2.34) 0.92 (0.89, 0.95) 0.300 (0.297, 0.304) -0.013 (-0.014, -0.012)

2 1240 (1188, 1290) 79 (77, 81) 1.56 (1.34, 1.86) 0.93 (0.90, 0.95) 0.232 (0.228, 0.235) -0.008 (-0.009, -0.007)

3 976 (931, 1024) 72 (70, 73) 0.91 (0.80, 1.07) 0.76 (0.74, 0.79) 0.326 (0.323, 0.329) -0.010 (-0.012, -0.009)

4 1510 (1494, 1530) 75 (74, 75) 1.75 (1.69, 1.85) 0.81 (0.80, 0.82) 0.308 (0.307, 0.309) -0.0082 (-0.0085, -0.0079)

5 1620 (1556, 1680) 81 (78, 82) 0.99 (0.85, 1.16) 0.92 (0.90, 0.95) 0.258 (0.255, 0.262) -0.012 (-0.014, -0.011)

SVD 1250 (1220, 1270) 77 (76, 78) 1.50 (1.41, 1.59) 0.85 (0.83, 0.86) 0.287 (0.286, 0.289) -0.010 (-0.011, -0.009)

Table C.5: Values of amplitude and rate of decay, one for each exponential, obtained from the fit of the

measurements performed on the sample E. In round brackets, the corresponding 95% confidence interval.

trace number ⌧1 [fs] ⌧2 [ps] ⌧3 [ns] A [a.u.] B [a.u.] C [a.u.]

7 844 (781, 917) 75 (72, 78) 4.79 (-0.36, 6.02) 0.99 (0.94, 1.06) 0.23 (0.22, 0.24) -0.0044 (-0,0056, -0.0037)

8 1030 (965, 1110) 73 (71, 76) 0.60 (0.18, 4.74) 0.91 (0.87, 0.96) 0.28 (0.28, 0.29) -0.0016 (-0,0058, -0,0025)

9 947 (878, 1030) 67 (64, 71) 1.43 (0.90, 3.51) 0.96 (0.90, 1.01) 0.19 (0.18, 0.20) -0.0040 (-0.0058, -0.0025)

SVD 929 (890, 971) 73 (71, 74) 1.68 (1.23, 2.65) 0.957 (0.957, 0.987) 0.236 (0.232, 0.239) -0.0035 (-0.045, -0.0026)

Table C.6: Values of amplitude and rate of decay, one for each exponential, obtained from the fit of

the measurements performed on the sample A. In round brackets, the corresponding 95% confidence

interval.
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Gold Nanosferes: Mechanical analysis

trace number ⌧1 [ps] ⌧2 [ps] T1 [ps] T2 [ps] A [a.u.] B [a.u.]

1 67 (57, 80) 229 (206, 257) 14.7 (14.6, 14.8) 81.5 (81.0, 82.0) -0.038 (-0.042, -0.033) -0.044 (-0.047, -0.042)

2 46 (40, 54) 180 (152, 221) 14.2 (14.1, 14.3) 73.7 (72.8, 74.6) 0.045 (0.040, 0.050) 0.021 (0.018, 0.023)

3 36 (29, 49) 292 (217, 445) 16.5 (16.2, 16.8) 72.1 (71.2, 73.1) 0.025 (0.021, 0.030) 0.012 (0.009, 0.014)

4 28 (25, 32) 254 (226, 291) 15.0 (14.9, 15.2) 59.7 (59.4, 59.9) 0.038 (0.034, 0.041) -0.0049 (-0.0055, -0.0043)

5 21 (18, 28) 185 (163, 215) 13.2 (12.9, 13.5) 83.1 (82.3, 83.9) 0.051 (0.043, 0.059) 0.037 (0.034, 0.041)

SVD 34 (30, 39) 216 (190, 251) 14.2 (14.1, 14.3) 80.5 (79.8, 81.1) -0.035 (-0.039, -0.032) 0.018 (0.016, 0.019)

Table C.7: Values of amplitude, rate of decay and period, one for each sine, obtained from the fit of the

measurements performed on the sample E. In round brackets, the corresponding 95% confidence interval.

trace number ⌧1 [ps] ⌧2 [ps] T1 [ps] T2 [ps] A [a.u.] B [a.u.]

7 351 (251, 585) 159 (141, 182) 17.3 (17.3, 17.4) 83.6 (82.8, 84.4) -0.024 (-0.028, -0.020) -0.069 (-0.074, -0.063)

8 59 (49, 75) 444 (322, 715) 14.5 (14.3, 14.6) 66.1 (65.5, 66.7) -0.043 (-0.049, -0.037) -0.011 (-0.013, -0.009)

9 22 (15, 43) 93 (69, 145) 14.4 (13.7, 15.1) 83.4 (79.9, 87.3) 0.036 (0.023, 0.049) -0.026 (-0.033, -0.019)

SVD 25 (890, 971) 273 (-559, 947) 15.7 (15.4, 16.0) 71.4 (70.2, 72.6) -0.010 (-0.012, -0.008) 0.0016 (0.0012, 0.0021)

Table C.8: Values of amplitude, rate of decay and period, one for each sine, obtained from the fit of

the measurements performed on the sample A. In round brackets, the corresponding 95% confidence

interval.
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Acronyms and symbols

ASOPS ASynchronous Optical Sampling

CCD Charge-Coupled Device

HR High Reflectivity

PBS Phosphate Bu↵ered Saline

SPM Scanning Probe Microscopy

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

EBM Electron Beam Lithography

FWHM Full Width at Half Maximum

�U Energy density absorbed from pump pulse

�⌫ Detuning frequency

T
osc

Oscillation period

T Temperature

�T Temperature variation

P Power

A Amplitude

I intensity

R Radius of the particle

D Diameter of the particle
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�
ext

E↵ective cross section

⌫ Frequency

f Focal lenght

� Wave length

⌧ Rate of decay

⇢ Mass density

! Angular frequency

� Phase

 Thermal conductivity

w0 Minimum waist

z0 Quote of minimum waist

a.u. Arbitrary Unit
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Fisica, Università Cattolica del Sacro Cuore, A.A. 2011-2012.

[8] A. Sterzi, ”Time resolved microscopy on nanostructured materials”, Tesi di Laurea Magis-
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ure nanocalorimetriche, Università degli Studi di Trieste, Master Thesis (2008);

http://www.dmf.unicatt.it/elphos/.

[20] M. E. Wall, A. Rechtsteiner, L. M. Rocha, Singular value decomposition and principal com-

ponent analysis, extracted from the book: D. Berrar, W. Dubitzky, M. Granzow, A Practical

Approach to Microarray Data Analysis, Springer US, pp. 91 - 109.

[21] V. Juvé, A. Crut, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti and F. Vallée Probing elas-

ticity at the nanoscale: THz acoustic vibrations of nanometric platinum particles, LASIM,

CNRS-Université Lyon 1
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hanno supportato in questi anni; un grazie sincero, perché forse senza di loro non avrei ottenuto
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