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Introduction

When a second order phase transition occurs you can introduce an order parame-
ter ⌘, obeying to the well-known Ginzburg-Landau equation.

This equation is very general, because it applies for any second order phase tran-
sition. There are a lot of applications, such as the study evolution of the order
parameter in superconductors or the analyze of the Higgs modes. There is an
important link between the superconductivity and the Higgs mechanism: in both
cases there is a symmetry breaking.

In particular, as we will see in chapter 1, the free energy for a superconductor
assumes the “Mexican hat” shape, with a degenerate circle of minima (the ground
state), defined by the order parameter ⌘ = Aei', (see figure 1).
In Quantum Field Theory there is an analogy because the Lagrangian can be
written as a function of the field ⌘:

L = @µ⌘@
µ

⌘ � V (⌘),

where the potential V (⌘) has the “Mexican hat” shape:
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Figure 1: “Mexican hat”: plot of the potential (or of the free energy) V as a
function of the field (or of the order parameter) ⌘.

From the ground state there can be two types of excitations:

• Transverse Nambu-Goldstone modes (or phase modes), corresponding to the
red line in figure 1. They are gapless and massless modes.

• Longitudinal Higgs modes (or amplitude modes), corresponding to the blue
line in figure 1. In particle physics this modes are massive and manifest as
the Higgs boson. They have gap.

It is also important to solve the Ginzburg-Landau equation numerically, because
simulations can be useful to predict the behavior of many physical situations, such
as the reflectivity of a superconductor.
To measure the reflectivity of a sample, the “Pump and Probe” technique is
widespread. With this technique a system in equilibrium is perturbed by a laser
pulse (Pump) changing the properties. Using another laser pulse (Probe), we can
analyze the reflectivity of the system in the perturbed state.
As time passes the system tends to return in the equilibrium state. With the
probe pulse we can analyze the reflectivity variations in time to discover the sys-
tem properties.
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Figure 2: Scheme of the “Pump and Probe” technique.

In this work we introduce the Ginzburg-Landau theory (chapter 1), analyzing the
cases of spatially homogeneous and of spatially inhomogeneous time-dependent
order parameter.

In the following chapters we try to solve Ginzburg-Landau di↵erential equation
numerically, using COMSOL Multiphysics software.

In particular, in chapter 3 we solve this equation for the case of a spatially homo-
geneous and time dependent order parameter.

In chapter 4 we deal with a spatially inhomogeneous and time dependent order
parameter, which is brought out of equilibrium by a laser pulse. We analyze a sys-
tem in which there is an incoherent propagation of the perturbation, reproducing
the di↵usion of the energy. At the end of this chapter we compare the simulations
with the experimental reflectivity of a superconductor.

In chapter 5 we introduce a super-lattice composed by materials with broken sym-
metry, satisfying Ginzburg-Landau equation. We analyze the dispersion relation
for a wave packet propagating through the super-lattice, and we try to understand
if there are frequency gaps. In particular we simulate a super-lattice using a 6-cells
geometry and a 1-cell geometry, with periodic boundary conditions.

We report also a brief chapter explaining the main features of COMSOL Multi-
physics software (see chapter 2).
In the next chapters we report also some brief sections in which we explain the
technical criteria (referring to chapter 2) used to obtain the reported solutions.
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Dynamics of the Symmetry Breaking

in Ordered Phases





Chapter 1

Model

In this chapter we introduce the Ginzburg-Landau theory for a second order
phase transition.

1.1 The Ginzburg-Landau Theory

A physical system experiences a “phase transition” when it changes from one
state to another with di↵erent properties.

Usually a phase transition occurs when some parameters, such as the temperature,
the applied magnetic field, the concentration of charge carriers, the pressure, ... ,
change and cross a critical value. Phase transitions can be classified in:

• First order phase transitions, characterized by the following features:

– The energy1 of the system has a discontinuity at the critical point.

– Spatial coexistence of di↵erent phases at the critical point.

– Hysteresis.

An example of first order phase transition is when a solid melts. In this case
the control parameter is the temperature of the system.

1In this case we mean the internal energy U , satisfying the relation dU = TdS�PdV +µdN ,
where T is the temperature, S the entropy, P the pressure, V the volume, µ the chemical potential
and N the number of particles of the system.
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• Second order phase transitions, characterized by the following features:

– The energy of the system is continuous at the critical point but its first
derivative (the specific heat C

V

) is not continuous.

– When the phase transition occurs the system looses symmetry.

– There is an “order parameter”, which is a scalar or a vector quantity
equal to 0 when the system is in the state with higher symmetry, and
di↵erent from 0 when the system is in the state with lower symmetry.

– When the system is in the state with lower symmetry and moves toward
the critical point, the order parameter tends to go to 0 with continuity.
At the critical point the order parameter is 0 and the system is in the
state with higher symmetry. So in an homogeneous system there cannot
be spatial coexistence of di↵erent phases at equilibrium.

Examples of second order phase transitions are the transition from ferromag-
netic to paramagnetic materials and the transition from a superconducting
state to a normal state. In both these cases the control parameter is the tem-
perature of the system. When the temperature falls under a critical value
T
c

, the system looses symmetry.

In this work we focus our attention on second order phase transitions only.

As mentioned before, the order parameters can be scalars (real or complex), or
vectors. In this work we analyze the case in which the order parameter is a scalar.

In the following we will use the following notation: T for the temperature and P
the pressure of the system; ⌘ for the order parameter; ⌦(P, T, ...) for the dimen-
sionless free energy (i.e. the free energy divided by a constant energy), expressed
as a function of the pressure, of the temperature or of the other control parameters.

We assume that ⌦ is a function of ⌘ and then we can make an expansion:

⌦(P, T, ⌘) = ⌦0(P, T ) + c1⌘ + ↵2(P, T ) |⌘|2 + c3 |⌘|2 ⌘ +
1

2
�4(P, T ) |⌘|4 + ... (1.1)

Since the free energy is a real number, the coe�cient ↵2 and �4 are real.

Let’s assume to work with a dimensionless order parameter.
If the order parameter is small we can cut this expansion to the 4th power.

13



Next we assume that the system is invariant for the transformation ⌘ ! �⌘, i.e.
the +⌘ or �⌘ values must give the same configuration. As a consequence, the
expansion of the free energy must contain terms with only even powers of ⌘.

If we suppose that the coe�cient �4 does not depend on the temperature we obtain
the following expression:

⌦(P, T, ⌘) = ⌦0(P, T ) + ↵2(P, T ) |⌘|2 +
1

2
�4(P ) |⌘|4 (1.2)

The equilibrium state is obtained when the free energy is minimum. If �4 < 0,
the free energy from expression (1.2) would continuously decrease for large values
of the order parameter; this is in contrast to the assumption that the expansion
can be stopped at the 4th power (which implies a small ⌘). Therefore we assume
�4 > 0.

Now we can evaluate the minimum of the free energy, using:

@⌦

@⌘⇤
= 0.

Reminding that |⌘|2 = ⌘⌘⇤, we obtain:

↵2(P, T )⌘ + �4(P ) |⌘|2 ⌘ = 0, (1.3)

which gives the following solutions:

⌘ = 0, (1.4)

|⌘| =
r
�↵2

�4
. (1.5)

If ↵2 > 0, only solution (1.4) represents the minimum (the other solution is imagi-
nary, therefore it has no physical meaning); if ↵2 < 0, the solution (1.5) represents
the minimum (the other solution represents a local maximum, as we can see from
the following graph).
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Figure 1.1: Plot of the free energy as a function of the order parameter amplitude.
The continuous line describes a case in which ↵2 < 0; the dashed line describes a
case in which ↵2 > 0.

If ↵2 > 0 the order parameter at equilibrium is 0, if ↵2 < 0 the order parameter
at equilibrium is

p
�↵2/�4.
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As a consequence, it is natural to assume that a phase transition occurs when ↵2

changes sign. If the phase transition occurs when the system reaches a critical
temperature T

c

, we can assume that:

↵2(P, T ) = a(P ) (T � T
c

) , (1.6)

and a(P ) is a real positive number. Consequently the order parameter at equilib-
rium is:

|⌘
eq

| =

8
>>><

>>>:

0 if T � T
c

s

� a(P )

�4(P )
(T � T

c

) if T < T
c

.
(1.7)
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1.2 Equation for a spatially inhomogeneous
time-independent order parameter

In this section we deal the case of a spatially inhomogeneous, but time-
independent, order parameter analyzing the equilibrium situation.

If the system is characterized by a space-dependent order parameter, the expression
of the free energy for a small order parameter becomes:

⌦(P, T, ⌘) =

Z

V


!0(P, T ) + A(P, T ) |⌘|2 + 1

2
B(P ) |⌘|4 + � |r⌘|2

�
dV, (1.8)

where the last term has been introduced to consider the free energy corrections
due to a spatially inhomogeneous order parameter.
The parameter � is called “sti↵ness”. If the order parameter is brought out of
equilibrium in a certain spatial point,

p
� describes the spatial scale at which the

order parameter has restored to his equilibrium value.

Now we need to calculate the functional derivative of the free energy with respect
to ⌘⇤. So we make the substitution ⌘ ! ⌘ + �⌘ to obtain:

�⌦(P, T, ⌘) =

Z

V

[!0(P, T ) + A(P, T ) (⌘ + �⌘) (⌘⇤ + �⌘⇤)+

+
1

2
B(P ) (⌘ + �⌘)2 (⌘⇤ + �⌘⇤)2 +

+ �r (⌘ + �⌘) ·r (⌘⇤ + �⌘⇤)] dV � ⌦(P, T, ⌘) =

=

Z

V

⇥
!0(P, T ) + A(P, T ) |⌘|2 + A(P, T )⌘�⌘⇤ + A(P, T )⌘⇤�⌘

+
1

2
B(P ) |⌘|4 +B(P )�⌘ |⌘|2 ⌘⇤ +B(P )�⌘⇤ |⌘|2 ⌘ +O

�
(�⌘)2

�
+

+� |r⌘|2 + �r⌘ ·r�⌘⇤ + �r⌘⇤ ·r�⌘ + � |r�⌘|2
⇤
dV � ⌦(P, T, ⌘).

In evaluating the functional derivative of the free energy with respect to ⌘⇤ we
note that:

• All the terms not explicitly containing �⌘⇤ cancel out.
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• The terms O ((�⌘)2) can be neglected.

�⌦(P, T, ⌘)

�⌘⇤
=

Z

V

⇥
A(P, T )⌘ +B(P ) |⌘|2 ⌘

⇤
dV +�

�

�⌘⇤

Z

V

⇥
r⌘ ·r�⌘⇤ + |r�⌘|2

⇤
dV.

Then we assume that r�⌘ is small, so we can neglect the last term:

�⌦(P, T, ⌘)

�⌘⇤
=

Z

V

⇥
A(P, T )⌘ +B(P ) |⌘|2 ⌘

⇤
dV + �

�

�⌘⇤

Z

V

[r⌘ ·r�⌘⇤] dV.

We evaluate the last integral by parts:

�⌦(P, T, ⌘)

�⌘⇤
=

Z

V

⇥
A(P, T )⌘ +B(P ) |⌘|2 ⌘

⇤
dV + �

�

�⌘⇤
(�⌘⇤r⌘)|

@V

+

��
�

�⌘⇤

Z

V

⇥
r2⌘

⇤
�⌘⇤dV.

Finally supposing that on the boundary of the system the order parameter is at
equilibrium, so (�⌘⇤)|

@V

= 0, we obtain:

�⌦(P, T, ⌘)

�⌘⇤
=

Z

V

⇥
A(P, T )⌘ +B(P ) |⌘|2 ⌘ � �r2⌘

⇤
dV. (1.9)

The equilibrium solution is when ⌦ is at a minimum, so from equation (1.9) we
obtain:

�r2⌘ � A(P, T )⌘ � B(P ) |⌘|2 ⌘ = 0. (1.10)

Here some examples of equilibrium solutions for a real order parameter:
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Figure 1.2: Equilibrium solutions for a 1D system (a 10 m line), with � = 1 m2,
A = �1 and B = 1. At position x = 0 m we apply r⌘ = 0 boundary condition
(bulk system), while at position x = 10 m we applyr⌘ = �⌘/b boundary condition
(interface with another material, characterized by a negligible order parameter). b
represents the spatial scale from x = 10 m at which the order parameter has fallen
to 0). For low b values, the order parameter falls rapidly to 0 (interface with an
insulator material); for high b values, the order parameter decreases slowly.
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Figure 1.3: Equilibrium solution (color scale) for a 2D system (a 20 m ⇥ 10 m
rectangle), with � = 1 m2, A = �1 and B = 1. At vertical sides and lower
horizontal side we apply r⌘ = 0 boundary condition (bulk system),while at upper
horizontal side we apply r⌘ = �⌘/b boundary condition (interface with another
material, characterized by b = 1 m).
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1.3 Ginzburg-Landau equation for a spatially in-
homogeneous time-dependent order param-
eter

In this section we deal the case of a spatially inhomogeneous and time-dependent
order parameter.

If ⌘ depends also on time and if at a time t0 it is not at the equilibrium value,
the order parameter will move towards the equilibrium value following the motion
equation:

@2⌘

@t2
+ (↵!)

@⌘

@t
= �!2 @Ũ

@⌘⇤
= �!2A(P, T )⌘ � !2B(P ) |⌘|2 ⌘ + !2�r2⌘. (1.11)

This equation is obtained in analogy to the dynamics equation in which �@Ũ/@⌘⇤

is the instantaneous force acting on the system (Ũ is the dimensionless free energy
per unit volume).

Figure 1.4: Body oscillating in the Ũ potential. Its dynamical equation of motion
is analogous to equation (1.11).
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In equation (1.11), ! has been introduced to safeguard the dimensions in the
equation and is related to the “frequency of oscillation” of ⌘ around its equilibrium
value.
↵ is a coe�cient representing the “damping” of ⌘.
In the limit ↵! >> 1 relation (1.11) reduces to the original Ginzburg-Landau
Kinetic Equation:

(↵!)
@⌘

@t
= �!2A(P, T )⌘ � !2B(P ) |⌘|2 ⌘ + !2�r2⌘, (1.12)

describing a system in which the order parameter does not make oscillations.
This is a di↵usion-like equation, describing an incoherent propagation of the order
parameter.

However, since equation (1.11) is more general than equation (1.12), we will deal
only with equation (1.11), which is called Ginzburg-Landau (GL) equation.

If the order parameter is real, equation (1.11) reduces to:

@2⌘

@t2
+ (↵!)

@⌘

@t
+ !2A(P, T )⌘ + !2B(P )⌘3 � !2�r2⌘ = 0.

This equation has the form of a wave equation in which !2A⌘ + !2B⌘3 is the
source.
Last equation can be rewritten as:

1

!2

@2⌘

@t2
+
⇣↵
!

⌘ @⌘

@t
+ A(P, T )⌘ +B(P )⌘3 � �r2⌘ = 0. (1.13)
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1.4 Linearized Ginzburg-Landau equation for a
spatially inhomogeneous time-dependent or-
der parameter

Equation (1.13) contains a cubic term, increasing the di�culties to obtain a
solution. Therefore if the order parameter di↵ers from the equilibrium solution
slightly we can approximate the cubic term with a linear term in order to obtain
a easier to handle equation. In this section we describe the approximation process
to linearize equation (1.13).

We suppose that ⌘
eq

(x) is the equilibrium solution of equation (1.13), i.e. ⌘
eq

(x)
satisfies relation (1.10) for a real order parameter. Evidently ⌘

eq

(x) does not
depend on time.

Defining the displacement of the order parameter with respect to the equilibrium
value as:

�⌘(x, t) = ⌘(x, t)� ⌘
eq

(x), (1.14)

we can make the substitution ⌘(x, t) ! ⌘
eq

(x) + �⌘(x, t) in equation (1.13) to
obtain:

1

!2

@2�⌘

@t2
+
⇣↵
!

⌘ @�⌘

@t
+ A(P, T )�⌘ + 3B(P )⌘2

eq

�⌘ +O
�
(�⌘)2

�
� �r2�⌘ =

= �r2⌘
eq

� A(P, T )⌘
eq

� B(P )⌘3
eq

. (1.15)

Reminding that ⌘
eq

(x) satisfies relation (1.10) for a real order parameter, we can
deduce that the right-hand side of equation (1.15) is 0.

Further, if the order parameter is slightly di↵erent from the equilibrium value,
so that the terms O

�
(�⌘)2

�
can be neglected, we can derive the Linearized

Ginzburg-Landau equation for a real order parameter:

1

!2

@2�⌘

@t2
+
⇣↵
!

⌘ @�⌘

@t
+
⇥
A(P, T ) + 3B(P )⌘2

eq

⇤
�⌘ � �r2�⌘ = 0. (1.16)
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Chapter 2

COMSOL Multiphysics main
features

In this chapter we explain briefly the main properties of the used program.

COMSOL Multiphysics is a software for solving di↵erential equations coming
from physical problems. Since this work deals with the numerical solutions of
the GL equation obtained using the COMSOL Multiphysics software, this brief
chapter explains the main features of this program.

As we start the program, a “Model Wizard” procedure allows the user to choose
the dimensions of the model:

• “0D”, if the space is not involved in the model.

• “1D”. The spatial coordinate is indicated with x.

• “1D-Axisymmetric”, if the model is in 2 dimensions, but there is a rotational
symmetry along the angle ', so the model involves 1 space variable only, the
radial coordinate r.

• “2D”. The spatial coordinates are indicated with (x, y).

• “2D-Axisymmetric”, if the model is in 3 dimensions, but there is a rotational
symmetry along the angle ', so the model involves 2 space variables only,
the radial coordinate r and the height coordinate z.

• “3D”. The spatial coordinates are indicated with (x, y, z).

Then we will be asked to add a “physics”. Since we need to solve a di↵erential
equation, in this work we use:
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• “Global ODEs and DAEs” in Chapter 3.

• “Coe�cient Form PDE” in all the other Chapters. This type of physics is
not available for a “0D” model.

Finally we will be asked to choose the “Study Type”. In particular in this work
we use:

• “Stationary Study”, if we are interested in an equilibrium solution, in the
case of a time-dependent model.

• “Time Dependent Study”, if we are interested in a solution at di↵erent times.

• “Eigenvalue Study”, if we are interested in the eigenvalues of an equation.

Then the “Model Wizard” procedure stops and we can modify the model adding
items. To do this we can right-click on each voice in the “Model Builder” space.
In particular we can add global “parameters” of the model right-clicking on
“Global Definitions”.
We can also use a previous solution as an input function of the model. To do this,
under the voice with the name of the model, we can add a interpolation function.
If we have not a “0D” model, the voice “Geometry” appears and we can choose
the shape of the spatial domains.

Under the voice with the name of the model there is the voice concerning the used
physics. In this work we use the following 2 possibilities:

• “Global ODEs and DAEs”, used in Chapter 3, for a “0D” model. Under the
voice “Global ODEs and DAEs” there is a voice concerning the equation.
The equation is written as:

f(u, u
t

, u
tt

) = 0,

where u is the solution, while u
t

and u
tt

are the first and the second derivate
of u with respect to time.
Here we are allowed to type the expression of f(u, u

t

, u
tt

) and the initial
values of u

t

and u
tt

.

• “Coe�cient Form PDE” in all the other Chapters. This type of physics is
not available for a “0D” model. Under the voice “Global ODEs and DAEs”
we are asked the dimensions of the dependent variable u and of the “Source
term” f in the equation; then there is a voice concerning the equation. The
equation is written as:

e
a

@2u

@t2
+ d

a

@u

@t
+r · (�cru�↵u+ �) + � ·ru+ au = f, (2.1)

26



and we can choose the value of the scalar coe�cients e
a

, d
a

, a, of the vector
coe�cients ↵, �, � and of the matrix coe�cient c. These coe�cients can
be a function on the spatial coordinates. As for the source term f , we are
asked to introduce a more general expression, which can be a function of the
dependent variable u and of space coordinates.
If we choose an “Eigenvalue Study”, COMSOL Multiphysics makes a tem-
poral Fourier transformation on the dependent variable u; so each derivate
with respect to time is substituted by the eigenvalue � to obtain:

�2e
a

u2 � �d
a

u+r · (�cru�↵u+ �) + � ·ru+ au = f.

To solve a “Coe�cient Form PDE” it is necessary to assign boundary con-
ditions on all the boundaries of the geometry, holding for all times. In
particular we use:

– “Zero Flux” boundary condition:

�n · (�cru�↵u+ �) = 0,

where n is the external normal to the boundary.

– “Dirichlet” boundary condition, if the dependent variable is constrained
to be a specified value on the boundary.

– “Flux/Source” boundary condition:

�n · (�cru�↵u+ �) = g � qu,

where n is the external normal to the boundary.

To solve a “Coe�cient Form PDE” it is necessary to assign also the initial
value of the dependent variable u (and its first derivative with respect to
time) on all the domains. To do this we can type the desired expression
under the “Initial Values” voice.
In the case of “Time Dependent Study”, the “Initial Values” expression is
the solution at the initial time.
In the case of “Stationary Study” and of “Eigenvalue Study”, the “Initial
Values” expression represents an initial guess for the solver. For a well
constrained problem, the particular expression assigned as “Initial Values”
should not influence the final solution.

COMSOL Multiphysics solves the di↵erential equation using the Finite Elements
Method. The initial problem to solve is approximated with another problem which
has a finite number of unknown parameters.
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So the times range and the space domains at which we have to calculate a solution
are discretized and the software solves the di↵erential equation at some points
only. We can choose the number of discretization points, increasing them to make
the solution more precise (but the computational costs increase). Finally, when
the software has obtained the solution in all the discretization points, it will make
an interpolation to give the solution in all the requested domains and times.

If the model has a geometry (not the 0D), the set of spatial discretization points
is called “Mesh”. Acting in “Mesh” voice we can choose the distance and the
spatial collocation of the discretization points.

For all the specified physics there is a “Study” node, specifying the algorithms and
the parameters used to obtain a solution. In particular for this work, sometimes
it is necessary to modify the following voices:

• For a “Stationary Study” it is sometimes necessary to diminish “Relative
tolerance” to obtain a more precise solution. Sometimes the number of it-
eration is not enough to reach a solution satisfying the value of “Relative
tolerance”; therefore it could be necessary to increase the “Maximum num-
ber of iterations”.

• For a “Time Dependent Study” it is necessary to open the voice “Time-
Dependent Solver” under the study node and to choose the “Generalized
alpha” Method, instead of the “BDF” Method (which generates numerical
errors in the case we are dealing with). Then to improve the precision of the
solution we have to set “Manual” at the voice “Steps taken by solver” and
than choose an opportune “Time step”. COMSOL Multiphysics solves the
di↵erential equation in a discrete number of temporal points. The temporal
distance among these points is specified by the “Time step” voice. Once
obtained the solution in these points, COMSOL Multiphysics makes an in-
terpolation to give the solution for the times listed under the voice “Step 1:
Time Dependent”.

• For an “Eigenvalue Study” we are asked to choose the “Desired number of
eigenvalues” and where to search the eigenvalues around. If we choose to
search an high number of eigenvalues, we may need to increase the “Maxi-
mum number of eigenvalue iterations”, under the voice “Eigenvalue Solver
1”.

Right clicking on “Study” node we can activate a “Parametric Sweep”, i.e. we
let vary certain parameters over a specified range and for each value of the
parameters the software evaluates a solution.
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Chapter 3

Dynamics of the order parameter
in the homogeneous case

In this chapter we discuss the solutions of GL equation in the case of a spatially
homogeneous order parameter.

In the homogeneous case ⌘ does not depend on space coordinates and GL equation
reduces to:

1

!2

@2⌘

@t2
+
⇣↵
!

⌘ @⌘

@t
+ A(P, T )⌘ +B(P )⌘3 = 0. (3.1)

In this chapter we try to solve equation (3.1) numerically, using “COMSOL
Multiphysics” software, for some values of the parameters ! and ↵.

3.1 Time-independent equilibrium order param-
eter with no damping

3.1.1 Results

In the current section we fix the parameters:

• A ⌘ �1 (dimensionless), in order to obtain a non-zero order parameter;

• B ⌘ 1 (dimensionless).

From equation (1.10) the equilibrium value is:

⌘
eq

=

r
�A

B
= 1.
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In this section we fix our attention on the case of a system without damping
(↵ = 0).

• For any value of ! and ↵, if we choose ⌘|
t=0 = 1 and d⌘

dt

��
t=0

= 0 s�1 as initial
conditions, the solution is

⌘(t) = ⌘
eq

= 1, 8t > 0

since the system is in a stable equilibrium position, so it does not move.

• If we choose ! = 10 s�1, ↵ = 0 as parameters and ⌘|
t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1

as initial values, we have the following solution:

Figure 3.1: Solution for GL equation in the case of homogeneous in space ⌘, with
! = 10 s�1, ↵ = 0 as parameters and ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1 as initial values.

30



The order parameter oscillates around the equilibrium value without symme-
try in the amplitude of the oscillation (in opposition to the case of a harmonic
oscillator).
The reason of this asymmetry can be found in the shape of the free energy
around the minimum. Shown in figure (3.2), the order parameter can go
under 0.9 to reach the value that the free energy has at ⌘ = 1.1.

Figure 3.2: The free energy around the equilibrium order parameter, for A = �1
and B = 1. The dotted line represents the upper limit of the free energy during
the oscillation, when initially the order parameter is brought to 1.1.

The period of oscillation is T = 0.45 s, which leads to an oscillation frequency:

!
osc

=
2⇡

T
= 13.96 s�1.

Finally we can note that the amplitude of oscillation does not diminish in
time, in accordance with the choice of ↵ = 0 (no damping).
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Next we make other simulations keeping fixed the parameter ↵ = 0 and the initial
values ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1, but changing the parameter ! and we evaluate
the frequency of oscillation of the system !

osc

. We find the following behavior:

Figure 3.3: Plot of !
osc

vs ! (circles) and fit with a line.

Then we fit the data with a line and obtained the following relation:

!
osc

= 1.4028 ! � 0.0350 s�1. (3.2)

The resulted correlation was 0.999999, therefore the behavior of the oscillation
frequency of the system is well reproduced by relation (3.2).

In the reported solutions the displacement of the order parameter �⌘ with respect
to the equilibrium value (⌘

eq

= 1), as defined in equation (1.14), is small.
So in this case equation (3.1) is well approximated by equation (1.16), with
� = 0 m2:

1

!2

@2�⌘

@t2
+
⇣↵
!

⌘ @�⌘

@t
+
⇥
A(P, T ) + 3B(P )⌘2

eq

⇤
�⌘ = 0.
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Inserting the values A = �1, B = 1, and ⌘
eq

= 1, we obtain:

@2 (�⌘)

@t2
+ (↵!)

@ (�⌘)

@t
+
⇣p

2 !
⌘2

�⌘ = 0. (3.3)

Finally, imposing ↵ = 0 we obtain the equation of an harmonic oscillator with
frequency !

osc

=
p
2 ! (see the appendix), which justifies relation (3.2).

Now we analyze the case in which the order parameter is at equilibrium, but it has
a “positive velocity” that brings ⌘ out of equilibrium. So we choose ! = 10 s�1,
↵ = 0 as parameters and ⌘|

t=0 = 1, d⌘

dt

��
t=0

= 1 s�1 as initial values, to obtain the
following solution:

Figure 3.4: Solution for GL equation in the case of homogeneous in space ⌘, with
! = 10 s�1, ↵ = 0 as parameters and ⌘|

t=0 = 1, d⌘

dt

��
t=0

= 1 s�1 as initial values.

As we can see, all the other conclusions of the previous cases are confirmed here.
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Now we treat the e↵ects of nonlinearity on the evolution of the order parameter.

• If we choose ! = 10 s�1, ↵ = 0 as parameters and ⌘|
t=0 = 0.1, d⌘

dt

��
t=0

= 0 s�1

as initial values, we have the following solution:

Figure 3.5: Solution for GL equation in the case of homogeneous in space ⌘, with
! = 10 s�1, ↵ = 0 as parameters and ⌘|

t=0 = 0.1, d⌘

dt

��
t=0

= 0 s�1 as initial values.

The asymmetry of the amplitude of the order parameter oscillation increases,
as you can see from the behavior of the free energy:
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Figure 3.6: The free energy, for A = �1 and B = 1. The dotted line represents
the upper limit of the free energy during the oscillation, when initially the order
parameter is brought to 0.1.

As you can see from figure 3.5, the system “spends” less time around ⌘ = 1.4
with respect to ⌘ = 0.1. This can be justified watching figure 3.6: actually ⌦
has a greater slope around ⌘ = 1.4 then around ⌘ = 0.1, so the force moving
the order parameter towards the equilibrium is greater around ⌘ = 1.4 and
therefore the order parameter leaves ⌘ = 1.4 more quickly.

The period of oscillation is T = 0.81 s, which leads to an oscillation frequency:

!
osc

=
2⇡

T
= 7.757 s�1.

We can note that the amplitude of oscillation does not diminish in time, in
accordance with the choice of ↵ = 0 (no damping).
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Next we make other simulations keeping fixed the parameter ↵ = 0 and the initial
values ⌘|

t=0 = 0.1, d⌘

dt

��
t=0

= 0 s�1, but changing the parameter ! and we evaluate
the frequency of oscillation of the system !

osc

. We find the following behavior:

Figure 3.7: Plot of !
osc

vs ! (circles) and fit with a line.

Then we fit the data with a line and obtained the following relation:

!
osc

= 0.7758 ! + 0.0011 s�1. (3.4)

The resulted correlation was 0.999998, therefore the behavior of the oscillation
frequency of the system is well reproduced by relation (3.4). This behavior could
be predicted by observing that the “force” - in analogy to the dynamics equation,
see equation (1.11) - on the order parameter is proportional to !. If follows that
T / 1/! and therefore !

osc

/ !.
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3.1.2 Technical details

To obtain the data in Section 3.1.1 we use a “0D Model”, with a “Global ODEs
and DAEs” physics. The input function is:

f(u, u
t

, u
tt

) = u
tt

+ (alpha ⇤ omega0) ⇤ u
t

+ ((omega0)2) ⇤ (A ⇤ u+B ⇤ (u3)).

In COMSOL Multiphysics we used the variable omega0 standing for ! of this work
and alpha standing for ↵ of this work.
The parameters and the initial values used are indicated for each graph.
We use a “Time Dependent Study”, with “Generalized alpha” time stepping
method. The steps taken by solver are manual, with time step varying from 1
to 10�4, depending on the frequency we are solving for.
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3.2 Time-independent equilibrium order param-
eter with damping

3.2.1 Results

In the current section we would like to see how the order parameter behaves if the
damping coe�cient is not negligible. Therefore fix the parameters:

• A ⌘ �1 (dimensionless), in order to obtain a non-zero order parameter;

• B ⌘ 1 (dimensionless).

So from equation (1.10) the equilibrium value is:

⌘
eq

=

r
�A

B
= 1.

Then in this section we keep fixed the parameter ! = 10 s�1 and we analyze the
behavior of the order parameter when ↵ changes.

• If we choose ! = 10 s�1, ↵ = 0.05 as parameters and ⌘|
t=0 = 1.1,

d⌘

dt

��
t=0

= 0 s�1 as initial values, we have the following solution:
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Figure 3.8: Red line: Solution for GL equation in the case of homogeneous in space
⌘, with ! = 10 s�1, ↵ = 0.05 as parameters and ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1 as
initial values. Green line and blue line: envelope of the order parameter motion.

As you can see in the last figure, the order parameter oscillates around the
equilibrium and the amplitude decreases with time.
By analogy to the harmonic oscillator we can say that the system is in an
“underdamped” regime.
Fitting the maxima points against time graph with a decreasing exponential
(blue line in last picture)

⌘0 + (�⌘) exp(��t),

we obtained the following values:

⌘0 = 0.99978,

�⌘ = 0.10044,

� = 0.24236 s�1.

The value of � is about (↵!)/2 and the exponential curve acts as an envelope
of the order parameter, in complete analogy to equation (4) of the Appendix.
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• If we choose ! = 10 s�1, ↵ = 0.2 as parameters and ⌘|
t=0 = 1.1,

d⌘

dt

��
t=0

= 0 s�1 as initial values, we have the following solution:

Figure 3.9: Red line: Solution for GL equation in the case of homogeneous in
space ⌘, with ! = 10 s�1, ↵ = 0.2 as parameters and ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1

as initial values. Green line and blue line: envelope of the motion of the order
parameter.

As you can see in the last figure, the order parameter oscillates around the
equilibrium value and the amplitude decreases with time.
This case has a damping larger than the previous case, because ⌘ reaches the
equilibrium value at shorter times, as expected from the choice of a greater
↵.
By analogy to the harmonic oscillator we can say that the system is in an
“underdamped” regime.
Fitting the maxima points of ⌘(t) with a decreasing exponential (blue line
in last picture)

⌘0 + (�⌘) exp(��t),
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we obtained the following values:

⌘0 = 0.99977,

�⌘ = 0.10039,

� = 0.96874 s�1.

The value of � is about (↵!)/2 and the exponential curve acts as an envelope
of the order parameter, in complete analogy to equation (4) of the Appendix.

The analogy with the damped harmonic oscillator can be justified by the
approximations made in last section to obtain equation (3.3).
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• Now we choose ! = 10 s�1 as parameter, ⌘|
t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1 as initial
values. We let ↵ range from 1.5 to 4 and we obtain the following solutions:

Figure 3.10: Solutions for GL equation in the case of homogeneous in space ⌘,
with ! = 10 s�1 as parameter and ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1 as initial values. ↵
ranges from 1.5 to 4.

From last picture we can observe that up to ↵ = 2.3 the order parameter
falls below the equilibrium value and finally ⌘ reaches the equilibrium value.
So up to ↵ = 2.3 the system is in the “underdamped” regime.
Then we analyze separately the behavior of the solutions for ↵ ranging from
2.5 to 2.8. In particular, expanding the order parameter axis about the
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equilibrium value, we obtain the following solutions:

Figure 3.11: Solutions for GL equation in the case of homogeneous in space ⌘,
with ! = 10 s�1 as parameter and ⌘|

t=0 = 1.1, d⌘

dt

��
t=0

= 0 s�1 as initial values. ↵
ranges from 2.5 to 2.8.

As you can see from the last figure, up to ↵ = 2.7 the order parameter falls
below the equilibrium value and finally ⌘ reaches the equilibrium value. So
up to ↵ = 2.7 the system is in the “underdamped” regime.

↵ = 2.75 is the first value where the order parameter does not fall below the
equilibrium value. So we can argue that at about ↵ = 2.75 the system is in
critically damped regime.
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Reminding that choosing ! = 10 s�1 the system has an oscillation frequency
of !

osc

= 13.96 s�1, we notice that the case of critically damped regime falls
when ↵! is about 2 times !

osc

, in perfect agreement with the theory of
damped harmonic oscillator.

Finally, the cases ↵ = 3 and ↵ = 4 represent the overdamped harmonic
oscillator regime.

3.2.2 Technical details

To obtain the data in Section 3.2.1 we use a “0D Model”, with a “Global ODEs
and DAEs” physics. The input function is:

f(u, u
t

, u
tt

) = u
tt

+ (alpha ⇤ omega0) ⇤ u
t

+ ((omega0)2) ⇤ (A ⇤ u+B ⇤ (u3)).

In COMSOL Multiphysics we used the variable omega0 standing for ! of this work
and alpha standing for ↵ of this work.
The parameters and the initial values used are indicated for each graph.
We use a “Time Dependent Study”, with “Generalized alpha” time stepping
method. The steps taken by solver are manual, with a time step of 10�3.
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3.3 Time-dependent equilibrium order parame-
ter with no damping

3.3.1 Results

In this section we analyze the behavior of the order parameter if the equilibrium
value changes with time. Therefore we suppose that for t < 0 s the system has
the parameters A = �1 and B = 1, so the order parameter is in equilibrium at
the value ⌘ = 1.
Then at time t = 0 s a laser pulse hits the system changing the properties. In
particular we suppose that the system is brought in another state with another
value for the equilibrium parameter, obtained changing the value of A.
Then, for t > 0 the system tends to return in the initial state, so the coe�cient A
can be thought as time dependent.
In this section we choose:

A(t) =

8
<

:

�1 for t < 0 s

�1 + de�t/⌧ for t > 0 s

with d < 1, so the system supports an order parameter; this coe�cient is
dimensionless.

B = 1 (dimensionless), 8t.

⌧ represents the temporal scale for the system to return in the initial state.

We solve GL equation for t > 0 s, and the behavior of the order parameter for
negative times is represented by choosing ⌘|

t=0 = 1, d⌘

dt

��
t=0

= 0 s�1 as initial values.

We analyze the following cases:
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• If we choose ! = 0.03 s�1, ↵ = 0.2, d = �0.1, ⌧ = 1010 s as parameters and
⌘|

t=0 = 1, d⌘

dt

��
t=0

= 0 s�1 as initial values, we have the following solution:

Figure 3.12: Solution for GL equation in the case of homogeneous in space ⌘,
with ! = 0.03 s�1, ↵ = 0.2, d = �0.1, ⌧ = 1010 s as parameters and ⌘|

t=0 = 1,
d⌘

dt

��
t=0

= 0 s�1 as initial values.

Since ⌧ is widely bigger than the solution times, the system returns in the
original state for very long times and during the solution times the system
does not change state. Therefore this case represents an order parameter
starting out of equilibrium and oscillating about:

⌘
eq

=

r
�A

B
=

r
1.1

1
= 1.0488.
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• If we choose ! = 0.03 s�1, ↵ = 0.2, d = 0.1, ⌧ = 1 s as parameters and
⌘|

t=0 = 1, d⌘

dt

��
t=0

= 0 s�1 as initial values, we have the following solution:

Figure 3.13: Solution for GL equation in the case of homogeneous in space ⌘, with
! = 0.03 s�1, ↵ = 0.2, d = 0.1, ⌧ = 1 s as parameters and ⌘|

t=0 = 1, d⌘

dt

��
t=0

= 0 s�1

as initial values.

At the beginning, ⌘ is out of equilibrium, because:

⌘
eq, beginning

=

r
�A

B
=

r
0.9

1
= 0.9487.

So the order parameter initially moves towards ⌘
eq, beginning

.

Since ⌧ is widely smaller than the solution times, after few seconds the system
returns in the original state, with ⌘

eq

= 1. Therefore after some seconds the
order parameter moves from ⌘

eq, beginning

towards ⌘
eq

= 1, like the case of an
order parameter out of equilibrium.
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• If we choose ! = 0.03 s�1, ↵ = 0.2, d = �0.1, ⌧ = 200 s as parameters and
⌘|

t=0 = 1, d⌘

dt

��
t=0

= 0 s�1 as initial values, we have the following solution:

Figure 3.14: Solution for GL equation in the case of homogeneous in space ⌘,
with ! = 0.03 s�1, ↵ = 0.2, d = �0.1, ⌧ = 200 s as parameters and ⌘|

t=0 = 1,
d⌘

dt

��
t=0

= 0 s�1 as initial values.

At the beginning, ⌘ is out of equilibrium, because:

⌘
eq, beginning

=

r
�A

B
=

r
1.1

1
= 1.0488.

So the order parameter initially oscillates about ⌘
eq, beginning

.

Finally, when the time is widely larger than ⌧ the system returns in the
original state, with ⌘

eq

= 1. Therefore for long times ⌘ oscillates about
⌘
eq

= 1, like the case of an order parameter out of equilibrium.

This is an intermediate case with respect to the two previous limiting cases.
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3.3.2 Technical details

To obtain the data in Section 3.3.1 we use a “0D Model”, with a “Global ODEs
and DAEs” physics. The input function is:

f(u, u
t

, u
tt

) = u
tt

+ (alpha ⇤ omega0) ⇤ u
t

+ ((omega0)2) ⇤ (A ⇤ u+B ⇤ (u3)),

with:
A = A0 ⇤ (1� d ⇤ exp(�t/tau)).

A0 = �1 fixed.

In COMSOL Multiphysics we used the variable omega0 standing for ! of this
work, alpha standing for ↵ of this work and tau standing for ⌧ of this work.
The parameters and the initial values used are indicated for each graph.
We use a “Time Dependent Study”, with “Generalized alpha” time stepping
method. The steps taken by solver are manual, with a time step of 10�3 for
the case with ⌧ = 1010 s, of 1 for the case with ⌧ = 1 s and of 0.1 for the case with
⌧ = 200 s.
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Chapter 4

Reflectivity for a system in
overdamped regime

In this chapter we simulate a cylindrical system, brought out of equilibrium by
a laser pulse, and we discuss the dynamics of the order parameter. We suppose
that the energy received from the laser pulse is di↵used in the system and then
given to the thermal bath surrounding the cylinder. Therefore we have to deal
with an overdamped regime, in which the propagation of the order parameter is
incoherent.
Finally we use simulations data to reproduce reflectivity behavior of a supercon-
ductor sample.

In this chapter we try to solve numerically GL equation for real order parameter:

1

!2

@2⌘

@t2
+
⇣↵
!

⌘ @⌘

@t
+ A(P, T )⌘ +B(P )⌘3 � �r2⌘ = 0

using “COMSOL Multiphysics” software, in the case of an overdamped system.
Therefore we choose the following parameters:

• ! = 10 s�1;

• ↵ = 103 (dimensionless), so the term of the second derivate with respect to
time becomes negligible with respect to the term of the first derivate. This
condition makes the overdamped regime;

• � = 0.1 m2;

• A = �1 (dimensionless), so the system supports an order parameter;

• B = 1 (dimensionless).
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The analyzed system is a cylinder with a radius of 2 m and a tickness d = 0.3 m.

Figure 4.1: The analyzed system.

The origin of the coordinates is chosen as the center of one base, with reference to
the last figure. For the shape of the analyzed sample, it is useful to use a system
of cylindrical coordinates (r,', z), as indicated in last picture.

To solve GL equation, we apply “zero flux” (i.e. r⌘ = 0) boundary condition
on all the external surface. This boundary condition implies that the order
parameter is constant at the external surface and that there is no current of order
parameter through the external surface.
Actually this boundary condition is not true in experiments, because outside of
the system there is vacuum and so the order parameter should diminish and go
to 0 near the boundaries.
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However we choose zero flux boundary condition because it is very easy to
implement and to obtain a solution; furthermore it is a good approximation to
reality for the initial times, when the perturbation of order parameter has not
reached the boundaries yet.
With this condition the order parameter at equilibrium is ⌘

eq

⌘ 1 over all the
system.

For negative times t < 0 s we suppose that a laser pulse hits the base with coordi-
nate z = 0 m and excites the system, as depicted in figure 4.1. Then at time t = 0 s
the laser pulse is turned o↵, so that the initial values for the order parameter are:

⌘|
t=0 = 1� I exp

✓
� z

l
pen

◆
exp

✓
� r2

l2
width

◆
; (4.1)

d⌘

dt

����
t=0

= 0 s�1. (4.2)

Initial value (4.1) tells us that for negative times (t < 0 s) a laser pulse adds a
perturbation to the equilibrium order parameter (⌘

eq

⌘ 1).
The laser pulse hits the system on the base with coordinate z = 0 m and the
perturbation decreases exponentially as we go inside the sample. l

pen

represents
the spatial scale over which the order parameter returns to the equilibrium value.
The perturbation has a rotational symmetry, so we can use a 2D-axisymmetric
geometry and study the behavior of the order parameter on a half-plane (r, z)
with ' fixed. Thanks to this symmetry, it does not matter the choice of the
particular value of '.
The perturbation has and a gaussian shape, with the z axis as center and l

width

as width.

In this chapter we analyze the behavior of the system for di↵erent values of l
pen

and of the parameter I (representing the intensity of the laser pulse), while we
will hold fixed the parameter l

width

= 0.5 m.

Initial value (4.2) means that the laser pulse brings the system in another
equilibrium state. So the system does not move until the laser is turned o↵ (at
t = 0 s) and at t = 0 s the order parameter as a negligible “velocity” (in analogy
to the dynamics equation).
For t > 0 s the system moves towards the equilibrium state with ⌘ = ⌘

eq

⌘ 1.
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When the order parameter in a certain point of the system changes, the reflectivity
(R) in that point changes.

In particular, introducing �⌘ = ⌘�⌘
eq

(as explained in section 1.4), we can assume
that the following relation holds:

R = � |�⌘| , (4.3)

where � is a constant.

This relation allows us to predict the reflectivity of the system behavior when we
know �⌘.

After analyzing the behavior of the order parameter in some interesting case, in
this chapter we compare experimental reflectivities with data from the solution of
GL equation, obtained with COMSOL Multiphysics.
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4.1 Results

4.1.1 Homogeneous excitation

This case is when l
pen

is larger than the thickness of the system in the z direction;
therefore �⌘ is almost equal in z direction at the initial times.
In particular we solved GL equation for the case l

pen

= 100 m (we remind that
the thickness of the system in z direction is d = 0.3 m).
Letting I assume several values, we analyze a few cases. For each value of the
parameter I we make a simulation.

Choosing I = 0 (i.e. no laser applied for t < 0 s), we verify that the system stays
forever in the equilibrium value ⌘

eq

⌘ 1:

Figure 4.2: The solution for l
pen

= 100 m and I = 0, for all times. The color scale
represents the value of ⌘.

Since I = 0, we can notice that this result does not depend on the particular choice
of l

pen

.
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Choosing I = 0.8 the order parameter changes so:

Figure 4.3: The solution for l
pen

= 100 m and I = 0.8, for t = 0 s. The color scale
represents the value of ⌘.

Figure 4.4: The solution for l
pen

= 100 m and I = 0.8, for t = 30 s. The color
scale represents the value of ⌘.
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Figure 4.5: The solution for l
pen

= 100 m and I = 0.8, for t = 60 s. The color
scale represents the value of ⌘.

Figure 4.6: The solution for l
pen

= 100 m and I = 0.8, for t = 100 s. The color
scale represents the value of ⌘.

As you can see from figures 4.3 - 4.6, as time passes the order parameter tends
to return the equilibrium value (⌘

eq

⌘ 1), without making oscillation about ⌘
eq

.
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This behavior is typical of the overdamped regime.
We can also note that the order parameter is actually constant in z direction. In
this particular case the equation reduces to a di↵usion equation.

When the intensity of laser pulse increases and is greater than 1, the initial value
described by (4.1) is no more correct because this would imply a negative order
parameter in a certain domain at t = 0 s. For a fixed ', in the half-plane (r, z)
the order parameter would be positive in ⌦1 domain and negative in ⌦2 domain,
with reference to figure 4.7.

Figure 4.7: The half-plane (r, z), for a fixed '.

� would be the line where the order parameter is 0. So from condition (4.1):

I exp

✓
� z

l
pen

◆
exp

✓
� r2

l2
width

◆
= 1.

Taking the logarithm we have:

z

l
pen

+
r2

l2
width

= ln I,

and this can be written as:

z = �
✓

l
pen

l2
width

◆
r2 + (ln I) l

pen

. (4.4)

So we proved that � is defined by (4.4), which is the equation of a parabola.
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Therefore we split the half-plane (r, z) in 2 domains, defined in figure 4.7 and by
relation (4.4), and we apply the following initial values condition:

⌘|
t=0 =

8
>>>><

>>>>:

1� I exp

✓
� z

l
pen

◆
exp

✓
� r2

l2
width

◆
for (r, z) in ⌦1

0 for (r, z) in ⌦2

(4.5)

d⌘

dt

����
t=0

= 0 s�1 everywhere. (4.6)

With this condition we analyze a few cases with a high intensity laser.

Now we would like to evaluate the reflectivity of the system in the region where
the laser e↵ects are high. To obtain this, we make an average of the order
parameter along a line, defined by the coordinate r = 0 m (where there is the
center of the gaussian pulse). The line starts at z = 0 m and is not longer than
l
pen

(in this region the laser e↵ects are high).
In the particular case of the current section, where the height of the cylinder d is
much shorter than l

pen

, z coordinate of the average line ranges from the beginning
to the end of the cylinder.
Finally, to obtain |< �⌘ >| (the average of �⌘ with positive sign), we subtract
⌘
eq

⌘ 1 to the average order parameter and take the positive sign.

|< �⌘ >| is a function of the laser intensity I and of the time.

From the definitions above, we are able to evaluate the expression of |< �⌘ >| at
t = 0 s analytically.
As stated before, we make the average on a line ranging from z = 0 m to z = w
(we use w to cover all the possible cases: w can be either the end of the cylinder
d or l

pen

). Using relations (4.1), (4.4) and (4.5) we have 3 di↵erent cases:

• I  1. In this case relation (4.1) holds over all the average line:

|< �⌘(t = 0 s) >| = |< ⌘(t = 0 s)� ⌘
eq

>| =

=

����
1

w

Z
w

0

[⌘(t = 0 s, r = 0 m, z)� ⌘
eq

] dz

���� =
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=

����
I

w

Z
w

0

exp

✓
� z

l
pen

◆
dz

���� =
l
pen

w


1� exp

✓
� w

l
pen

◆�
I. (4.7)

• 1 < I  exp (w/l
pen

). In this case the average line lies in 2 domains (the
average line lies completely in ⌦1 domain at the limit value I = exp (w/l

pen

)),
so we have to make the average using relation (4.5):

|< �⌘(t = 0 s) >| = |< ⌘(t = 0 s)� ⌘
eq

>| =

=

����
1

w

Z
w

0

[⌘(t = 0 s, r = 0 m, z)� ⌘
eq

] dz

���� =

=

������
1

w

Z (ln I)lpen

0

dz � I

w

Z
w

(ln I)lpen

exp

✓
� z

l
pen

◆
dz

����� =

=

�����
(ln I)l

pen

w
+

l
pen

I

w

⇢
exp

✓
� w

l
pen

◆
� exp


�(ln I)l

pen

l
pen

������ =

=
l
pen

w

����1 + (ln I)� I exp

✓
� w

l
pen

◆���� =

=
l
pen

w


1 + (ln I)� I exp

✓
� w

l
pen

◆�
. (4.8)

The last equality follows from the fact that in this range of intensity,
I exp (�w/l

pen

) ranges from 0 to 1 and so

1 + (ln I)� I exp (�w/l
pen

)

is always positive.

In the case of I ! 1 expression (4.8) reduces to expression (4.7). Therefore
the general expression of |< �⌘ >| is continuous at I = 1.

Evidently expression (4.8) increases, reaching the limiting value of 1 if
I ! exp (w/l

pen

).

• I > exp (w/l
pen

). In this case the average line lies completely in ⌦1 domain.
Therefore:

|< �⌘(t = 0 s) >| = |< ⌘(t = 0 s)� ⌘
eq

>| =

=

����
1

w

Z
w

0

[⌘(t = 0 s, r = 0 m, z)� ⌘
eq

] dz

���� =
�����

1

w

Z
w

0

dz

���� = 1. (4.9)
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This case is reached when the laser is so intense that the order parameter
has been brought to 0 over all the average line (saturation).

Increasing the laser intensity, �⌘ does not change further over the average
line.

Evidently the general expression of |< �⌘ >| is continuous at

I = exp (w/l
pen

) .

Consequently we have just obtained a continuous expression for |< �⌘ >| at t = 0 s:

|< �⌘(t = 0 s) >| =

8
>>>>>>>>>><

>>>>>>>>>>:

l
pen

w


1� exp

✓
� w

l
pen

◆�
I (4.7) for I  1

l
pen

w

����1 + (ln I)� I exp

✓
� w

l
pen

◆���� (4.8) for 1 < I  exp

✓
w

l
pen

◆

1 (4.9) for I > exp

✓
w

l
pen

◆
.

As you can see, for t = 0 s and w = l
pen

(laser penetration lower than the cylinder
thickness), |< �⌘ >| does not depend on the particular choice of l

pen

.

Furthermore it is worth to notice that the general expression of |< �⌘ >| is always
continuous for every laser intensity.
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Now we make a few simulations changing the value of I and for each value of I we
evaluate the line average. Here we report the results obtained:

Figure 4.8: Plot of |< �⌘ >| as a function of the laser intensity I, for the initial time
t = 0 s and l

pen

= 100 m. Here we report the values obtained from the simulations
(markers) and the values obtained with the theoretical expression (continuous
line).

As you can see from figure 4.8, the values from simulations follow very well the
theoretical equation, calculated for w = d = 0.3 m (the width of the cylinder).
When the intensity grows from 0 to 1, |< �⌘ >| increases proportionally, as
predicted by equation (4.7). The theoretical coe�cient of proportionality is
0.998501.

As time passes, the order parameter tends to return to the equilibrium value. So
the values of |< �⌘ >| diminish with time. The more is the intensity used, the
more the system is perturbed and the more time is necessary to return to the
equilibrium value (see figure 4.9).
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Figure 4.9: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
times and l

pen

= 100 m. These results are obtained from simulations.
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4.1.2 Quasi-homogeneous excitation

In this case l
pen

is slightly bigger than the thickness of the system in the z
direction (d); so �⌘ is not equal in z direction at the initial times, but �⌘ varies
slightly in z direction.
In particular we solved GL equation for the case l

pen

= 1 m (we remind that the
largeness of the system in z direction used is 0.3 m).
Letting I assume several values, we analyze a few cases, using the same criterion
expressed in Section 4.1.1.

Choosing I = 1.15 the order parameter moves so:

Figure 4.10: The solution for l
pen

= 1 m and I = 1.15, for t = 0 s. The color scale
represents the value of ⌘.
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Figure 4.11: The solution for l
pen

= 1 m and I = 1.15, for t = 30 s. The color
scale represents the value of ⌘.

As you can see from figures 4.10 - 4.11, as time passes the order parameter tends
to return to the equilibrium value (⌘

eq

⌘ 1), without making oscillation about ⌘
eq

.
This behavior is typical of the overdamped regime.
We can also note that the order parameter does not have significative variations
in z direction.

As anticipated in Section 4.1.1, we would like to evaluate the reflectivity of the
system in the region where the laser e↵ects are high. To obtain this, we make an
average of the order parameter along a line, starting at (r = 0 m, z = 0 m) and
finishing at (r = 0 m, z = w).
In the particular case of the current section, where the thickness d of the cylinder
is shorter than l

pen

, we choose w = d.
As for |< �⌘ >|, all the considerations expressed in Section 4.1.1 holds.

64



Figure 4.12: Plot of |< �⌘ >| as a function of the laser intensity I, for the initial
time t = 0 s and l

pen

= 1 m. Here we report the values obtained from the simula-
tions (markers) and the values obtained with the theoretical expression (continuous
line).

As you can see from figure 4.12, the values from simulations follow very well the
theoretical equation, calculated for w = d = 0.3 m (the width of the cylinder).
When the intensity grows from 0 to 1, |< �⌘ >| increases proportionally, as
predicted by equation (4.7). The theoretical coe�cient of proportionality is
0.863939.

As time passes, the order parameter tends to return to the equilibrium value. So
the values of |< �⌘ >| diminish with time. The more is the intensity used, the
more the system is perturbed and the more time is necessary to return to the
equilibrium value (see figure 4.13).
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Figure 4.13: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
times and l

pen

= 1 m. These results are obtained from simulations.
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4.1.3 Strongly inhomogeneous excitation

In this case l
pen

is shorter than the thickness of the system in the z direction
(d); so �⌘ varies a lot in z direction, reaching the value of 0 near one end of the
cylinder. Therefore this case is representative of the bulk system, in which the
laser does not penetrate in the system.
In particular we solved GL equation for the case l

pen

= 0.1 m (we remind that the
largeness of the system in z direction used is d = 0.3 m).
Letting I assume several values, we analyze a few cases, using the same criterion
expressed in Section 4.1.1.

Choosing I = 1.5 the order parameter moves so:

Figure 4.14: The solution for l
pen

= 0.1 m and I = 1.5, for t = 0 s. The color scale
represents the value of ⌘.
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Figure 4.15: The solution for l
pen

= 0.1 m and I = 1.5, for t = 30 s. The color
scale represents the value of ⌘.

As you can see from figures 4.14 - 4.15, as time passes the order parameter tends
to return the equilibrium value (⌘

eq

⌘ 1), without making oscillation about ⌘
eq

.
This behavior is typical of the overdamped regime.
We can also note that the order parameter has a big variation in z direction, up
to a factor 10. The laser perturbation on a surface weakly influences the system
at a depth larger than l

pen

.

As anticipated in Section 4.1.1, we would like to evaluate the reflectivity of the
system in the region where the laser e↵ects are high. To obtain this, we make an
average of the order parameter along a line, starting at (r = 0 m, z = 0 m) and
finishing at (r = 0 m, z = w).
In the particular case of the current section, where the thickness d of the cylinder
is longer than l

pen

, we choose w = l
pen

.
As for |< �⌘ >|, all the considerations expressed in Section 4.1.1 holds.
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Figure 4.16: Plot of |< �⌘ >| as a function of the laser intensity I, for the ini-
tial time t = 0 s and l

pen

= 0.1 m. Here we report the values obtained from
the simulations (markers) and the values obtained with the theoretical expression
(continuous line).

As you can see from figure 4.16, the values from simulations follow very well the
theoretical equation, calculated for w = l

pen

= 0.1 m.
When the intensity grows from 0 to 1, |< �⌘ >| increases proportionally, as
predicted by equation (4.7). The theoretical coe�cient of proportionality is
0.632121.

As time passes, the order parameter tends to return to the equilibrium value. So
the values of |< �⌘ >| diminish with time. The more is the intensity used, the
more the system is perturbed and the more time is necessary to return to the
equilibrium value (see figure 4.17).

69



Figure 4.17: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
times and l

pen

= 0.1 m. These results are obtained from simulations.
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4.1.4 Bulk system

In this case l
pen

is much shorter than the thickness of the system in the z direction
(d); so at the initial time �⌘ varies a lot in z direction, reaching a value close to 0
inside the cylinder. Therefore in this case we have the bulk system.
In particular we solved GL equation for the case l

pen

= 0.03 m (we remind that
the thickness of the system in z direction used is d = 0.3 m).
Letting I assume several values, we analyze a few cases, using the same criterion
expressed in Section 4.1.1.

Choosing I = 2.6 the order parameter moves so:

Figure 4.18: The solution for l
pen

= 0.03 m and I = 2.6, for t = 0 s. The color
scale represents the value of ⌘.
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Figure 4.19: The solution for l
pen

= 0.03 m and I = 2.6, for t = 10 s. The color
scale represents the value of ⌘.

As you can see from figures 4.18 - 4.19, as time passes the order parameter tends
to return the equilibrium value (⌘

eq

⌘ 1), without making oscillation about ⌘
eq

.
This behavior is typical of the overdamped regime.

As anticipated in Section 4.1.1, we would like to evaluate the reflectivity of the
system in the region where the laser e↵ects are high. To obtain this, we make an
average of the order parameter along a line, starting at (r = 0 m, z = 0 m) and
finishing at (r = 0 m, z = w).
In the particular case of the current section, where the thickness d of the cylinder
is longer than l

pen

, we choose w = l
pen

.
As for |< �⌘ >|, all the considerations expressed in Section 4.1.1 holds.
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Figure 4.20: Plot of |< �⌘ >| as a function of the laser intensity I, for the ini-
tial time t = 0 s and l

pen

= 0.03 m. Here we report the values obtained from
the simulations (markers) and the values obtained with the theoretical expression
(continuous line).

As you can see from last picture, the values from simulations follow very well the
theoretical equation, calculated for w = l

pen

= 0.03 m.
When the intensity grows from 0 to 1, |< �⌘ >| increases proportionally, as
predicted by equation (4.7). The theoretical coe�cient of proportionality is
0.632121.

As time passes, the order parameter tends to return to the equilibrium value. So
the values of |< �⌘ >| diminish with time. The more intensity used, the more the
system is perturbed, the more time is necessary to return to the equilibrium value
(see figure 4.21).
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Figure 4.21: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
times and l

pen

= 0.03 m. These results are obtained from simulations.
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4.1.5 Comparison of the analyzed cases

In the following figure we plot |< �⌘ >| as a function of I at the initial time, for
all the cases of l

pen

analyzed:

Figure 4.22: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
values of l

pen

, for thickness d = 0.3 m and for t = 0 s. These results are obtained
from simulations.

At t = 0 s, when I = 1, for l
pen

>> d the system is saturated over the average
line. Increasing the intensity |< �⌘ >| does not change.
As l

pen

decreases, the laser penetrates less, therefore the threshold moves to higher
values of intensity.
Finally, at the initial time we obtain the same graph for the cases l

pen

= 0.1 m
and l

pen

= 0.03 m. This agrees with the theoretical expressions (4.7) - (4.9),
showing that if w = l

pen

, then |< �⌘ >| does not depend on l
pen

.
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Figure 4.23: Plot of |< �⌘ >| as a function of the laser intensity I, for di↵erent
values of l

pen

, for thickness d = 0.3 m and for t = 10 s. These results are obtained
from simulations.

After 10 s, for each intensity I, |< �⌘ >| decreases with l
pen

. Actually if l
pen

is
large, the perturbation is more significant and it is necessary more time to restore
the equilibrium value.
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4.1.6 Bulk system: comparison between simulations and
experimental data

In this section the experimental data for the reflectivity will be compared with
the simulations, using relation (4.3).
Since the experiments have been performed on a sample with a thickness larger
than the penetration length of the light, it is necessary to compare the experimen-
tal outcomes to the simulations for a bulk system (case analyzed in section 4.1.4).

First of all we would like to find the temporal scale ⌧ at which the order parameter
has restored to his equilibrium value. Therefore for some values of laser intensity
I we fit |< �⌘ >|, as a function of time, with a decreasing exponential:

y0 +H0 exp

✓
� t

⌧
fit

◆
.

Figure 4.24: Markers: plot of |< �⌘ >| as a function of time for I = 0.1 and
I = 1.0, for l

pen

= 0.03 m. Continuous line: fit with a decreasing exponential.
These results are obtained from simulations.

Therefore we obtain ⌧
fit

⇠ 2 s for any analyzed intensity.
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However, for I > 1 the value of |< �⌘ >| at the initial time has been introduced
as a piecewise function, so the evolution in time of |< �⌘ >| does not follow an
exponential function (see figure 4.25) and so it does not make sense to look for a
⌧
fit

in the high intensity simulations.

Figure 4.25: Plot of |< �⌘ >|, as a function of time, for I = 10 and I = 100, for
l
pen

= 0.03 m (data from simulations).

Experimental data1 refer to a 30 K superconductor sample of
Bi2Sr2Ca0.92Y0.08Cu2O8+�

, hit by laser pulses (at repetition rate of 250 kHz), with
a power up to 8 mW, a pulse width of 150 fs and wavelength centered at 800 nm.
The laser spot size (spot diameter) is 80 µm (± 10 %).

In the experiment the laser pulse hits the sample and then, as time passes,
the reflectivity is measured.

1Data taken from: G. Coslovich, C. Giannetti, F. Cilento, S. Dal Conte, G. Ferrini,
P. Galinetto, M. Greven, H. Eisaki, M. Raichle, R. Liang, A. Damascelli, F. Parmigiani,
Evidence for a photoinduced nonthermal superconducting-to-normal-state phase transition in

overdoped Bi2Sr2Ca0.92Y0.08Cu2O8+�, PHYSICAL REVIEW B 83, 064519 (2011).
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Using a polarizer, the intensity of the laser has been changed. Therefore it is
possible to see the behavior of the reflectivity as time passes, for di↵erent values
of impinging laser intensity.

We call I
N

the normalized laser intensity (I
N

= Imax

N

= 1 is when all the power of
the laser pulse passes through the polarizer).

As we did for the simulations, we would like to find the temporal scale ⌧
fit

at
which the order parameter has restored to his equilibrium value. Therefore for
some values of I

N

we fit the reflectivity (R) values, as a function of time, with a
decreasing exponential:

y0 +H0 exp

"
�
�
t� t̂0

�

⌧
fit

#
.

Figure 4.26: Plot of R, as a function of time, for I
N

= 0.1894 (data from experi-
ment).
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For all the analyzed laser intensities we obtained ⌧
fit

⇠ 8 ps.

Now we would like to analyze the system at short times after the laser pulse, i.e.
where the e↵ect of the perturbation is large.

• We choose to analyze the reflectivity of the system, as a function of the laser
intensity, after 25 % of ⌧

fit

(i.e. after 2 ps, for the analyzed case) from the
laser pulse switching o↵.

• For each studied I
N

we average the reflectivity from 13.30 ps to 13.31 ps,
because the laser switching o↵ was at the moment t̂0 ⇠ 11 ps on the used
temporal scale (see figure 4.26).

• We note that the average over a short time interval (100 fs) could be a↵ected
by noise. To avoid this problem, we make also a second analysis, averaging
on a larger time interval: for each studied I

N

we average the reflectivity from
10 ps to 13 ps.

• We normalize the value of reflectivity, dividing it by its maximum value. So
we obtain the normalized average reflectivity < R >, see markers in figure
4.27.

• We would like to compare the experimental < R > with |< �⌘ >| from
simulations. Therefore we analyze |< �⌘ >| after 0.5 s (25 % of ⌧

fit

), see
blue line in figure 4.27.
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Figure 4.27: Blue continuous line: plot of |< �⌘ >| as a function of the laser
intensity I for t = 0.5 s (values from simulations). Red markers: plot of < R > as
a function of the normalized laser intensity I

N

(average made from 10 ps to 13 ps).
Green markers: plot of < R > as a function of the normalized laser intensity I

N

(average made from 13.30 ps to 13.31 ps).

From this figure we note that in both cases < R > has the same functional
behavior of |< �⌘ >|. However < R > reaches the saturation for I

N

= 1, while
|< �⌘ >| saturates for I = 250.

Actually I and I
N

have not the same meaning, because we do not know which
physical situation correspond to a certain I

N

. Therefore we would like to find the
relation between I and I

N

.

I
N

= 1 means that the sample is excited by the maximum laser intensity available
from the used experimental setup. Evidently a region of the sample has been
brought in the state with ⌘ = 0.

Comparing < R > graph and |< �⌘ >| graph2, we would like to define the region

2We assume that relation (4.3) holds. Since we are dealing with a normalized reflectivity, we
can deduce � = 1 in this case.
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of the experimental system in which the order parameter is brought to 0.
In other words when we choose a certain laser intensity I

N

in the experiments
we generate a certain physical situation. We would like to find the value of I (in
the simulations) which generates the solution of GL equation reproducing that
physical situation.

1. We want to have |< �⌘ >|, as a function of I, evaluated in 2 · 106 values of
I ranging from I = 0 to I = 103.
To obtain |< �⌘ >| for one value of I we have to make one simulation. Instead
of making 2 · 106 simulations (very expansive and time wasting procedure),
we run a few simulations (for a few values of I), so that we can see the
behavior of |< �⌘ >|, as a function of I, for the desired interval from I = 0
to I = 103. Then we use COMSOL Multiphysics to make an interpolation
of this function, to obtain all the 2 · 106 values of |< �⌘ >|.

2. Using MATLAB software we tune the parameter " from 0 to 201, with a step
of 1.

3. For each value of I
N

, we search the value (which is labeled with I [IN ]
near

) of
interpolated intensity nearest to " · I

N

. Then we evaluate:

f
ms

(") =
X

IN

���⌦�⌘
�
I [IN ]
near

�↵��� hR (" · I
N

)i
 2

.

We make this step for all the tuned values of ".

4. We look for the " at which f
ms

(") assumes the minimum value.

5. We repeat the last 2 steps, with " tuned around the minimum (with a step
of 0.01). So we find a more precise minimum ("

min

).

We execute this algorithm for the two sets of < R > (reported in figure 4.27) and
we obtain the "

min

values reported in the following table:

Average from 13.30 ps to 13.31 ps Average from 10 ps to 13 ps
Symbol in I +
Graphics

"
min

6.43 11.12
Threshold
Fluence 99.0 (± 20 %) 57.2 (± 20 %)

µJ

cm2

�
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Using the conversion
I = "

min

I
N

, (4.10)

the experimental data can be compared directly with simulations.

Figure 4.28: Blue continuous line: plot of |< �⌘ >| as a function of the laser
intensity I for t = 0.5 s (values from simulations). Red markers: plot of < R >
as a function of the intensity I = 11.12 · I

N

(average made from 10 ps to 13 ps).
Green markers: plot of < R > as a function of the intensity I = 6.43 · I

N

(average
made from 13.30 ps to 13.31 ps).

This figure shows that both the sets of < R > data have a behavior similar to
|< �⌘ >|. However, the set obtained as a long time average (red marker in figure
4.28) follows |< �⌘ >| better: using a short time average we see the e↵ects of the
noise.

It is important to point out that I = 1 in simulations is the threshold value
at which you begin to have ⌘ = 0 in one point in the system - i.e. the broken
symmetry has been restored in that point.
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In the case of a superconductor, for instance, the system is brought in normal
state in the region where ⌘ = 0.
Therefore, from the conversion relation (4.10), we can say that the threshold laser
intensity is I th

N

= 1/"
min

.

Reminding that I
N

is normalized, we have the following relation:

I th
N

Imax

N

= I th
N

=
1

"
min

.

So the power to apply in order to have the threshold situation is:

Threshold Power =
Threshold Power

Maximum Power
·Maximum Power =

=
I th
N

Imax

N

·Maximum Power =
1

"
min

·Maximum Power =
1

"
min

· 8 mW

and therefore the energy per pulse to have the threshold situation is:

1

"
min

· Maximum Power

Repetition Rate
=

1

"
min

· 8 mW

250 kHz
.

Finally we can introduce the fluence to have the threshold situation as the corre-
sponding energy per pulse divided by the laser spot area:

Threshold F luence =
1

"
min

· Maximum Power

⇡
�
Spot Diameter

2

�2 ·Repetition Rate
=

=
1

"
min

· 8 mW

⇡
�
80 µm

2

�2 · 250 kHz
.

The obtained threshold fluence values are reported in the last table.
The error for the threshold fluence is due to the propagation of the spot diameter
error.

The obtained threshold fluence values can be compared with the experimental one
(�

C

), estimated as the value at which there is the transition from a low excitation
regime (when the fluence is small and < R > increases proportionally to the
fluence) to a high excitation regime (when the fluence is high and < R > has a
sub-linear dependence on the fluence).
The threshold fluence values obtained from simulations have the same order of
magnitude of the experimental fluence (estimated as �

C

= 26 µJ/cm2). However
due to the big error on the spot diameter, the values obtained from simulations
are not very precise.
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4.2 Technical details

To obtain the data in Chapter 4 we use a “2D-Axisymmetric Model”, with a
“Coe�cient Form PDE” physics.
Then we introduce the model parameters. Since in COMSOL Multiphysics we
cannot use Greek letters as parameters, we use:

Parameter names in COMSOL Multiphysics Corresponding parameter in our work
omega !
alpha ↵
lambda �

A A
B B

penetrazione l
pen

larghezza l
width

I I

The parameters used for each simulation are specified near the reported results.

Geometry:

• The geometry used is a rectangle 2 m⇥ 0.3 m, built in the (r, z) plain (with
reference to figure 4.7).

If I > 1, the geometry is more complicate:

• We create a parametric curve to define the parabola introduced in equation
(4.4). The dimensionless parameter s, defining the parametric curve, has
to represent the variable r in equation (4.4). So we assign the following
expression to r coordinate in the “Expressions” field:

s ⇤ 1 [m].

To obtain the parabola, the parameter s ranges from 0 to

larghezza ⇤ sqrt(log(I))/1 [m].

In COMSOL Multiphysics “log” stands for natural logarithm and “sqrt”
stands for square root.
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Then we write the following expression for z coordinate in the “Expressions”
field:

(�s2 ⇤ 1
⇥
m2
⇤
/larghezza2 + log(I)) ⇤ penetrazione.

So we obtain a parabola.

Finally, in “Position” field we set r = 0 and z = 0. We write 0 in the
“Rotation Angle” field.

• We create a segment:
from (r = 0, z = 0) to (r = larghezza ⇤ sqrt[log(I)], z = 0)
and a segment:
(r = 0, z = 0) to (r = 0, z = log(I) ⇤ penetrazione).

To create a segment we right-click over the voice “Geometry” and we choose
“Bézier Poligon”. Then we choose “Open curve” in the “Type” field, and
click on “Add linear”. So we can introduce the coordinates of the segment
beginning and end.

• We right-click on “Geometry”, we choose “Boolean operation ! Union”, we
select the parabola and the 2 segments to make the union (we select “Keep
interior boundaries”).
The “Union” of the parabola and the 2 segments generates a closed curve.

• We right-click on “Geometry”, we choose “Conversions ! Convert to Solid”,
we select the closed curve obtained from the “Union” in the last step, to make
an irregular plane figure, surrounded by that closed curve.

• We right-click on “Geometry”, we choose “Boolean operation ! Di↵erence”,
we select the rectangle as “Object to add” and the irregular plane figure
generated in the last step as “Object to subtract” to create the “domain 2”
(we select “Keep interior boundaries” and “Keep input objects”).

• We right-click on “Geometry”, we choose “Boolean operation ! Intersec-
tion”, we select the rectangle and the irregular plane figure generated in the
previous steps to create the “domain 1” (we select “Keep interior bound-
aries”).
“domain 1” and “domain 2” are drawn in figure 4.29.

• If penetrazione < 0.3 m we create a segment:
from (r = 0, z = 0) to (r = 0, z = penetrazione),
over which the solution will be averaged. If penetrazione < 0.3 m, we do
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not need to create this segment, because the average will be made on the
boundary of the rectangle.

Clicking on “Coe�cient Form PDE” we choose “Dimensionless” as “Dependent
variable quantity” (u), “None” for the “Source term quantity” field and 1 for the
“Unit” field.
Then we introduce the coe�cient in the “Coe�cient Form PDE”; referring to
equation (2.1):

e
a

@2u

@t2
+ d

a

@u

@t
+r · (�cru�↵u+ �) + � ·ru+ au = f, (2.1)

we assign the following coe�cients:

Terms in equation (2.1) Assigned coe�cients
c lambda (Isotropic)
a A
f �B ⇤ u3

e
a

1/omega2

d
a

alpha/omega
↵ (0, 0)
� (0, 0)
� (0, 0)

As boundary conditions we apply “Zero Flux” boundary condition to all external
boundaries (see next figure).

COMSOL Multiphysics applies automatically continuity of the solution u and of
cru at the internal boundaries, since we do not assign them an explicit condition.
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Figure 4.29: Plot of the geometry of the system, in the case of l
pen

= 0.1 m and
I = 6. We apply “Zero Flux” boundary condition to the blue lines. The program
applies automatically continuity of u and of cru at the red lines.

As per the “Initial values”:

• In the case I  1 we type:

1� I ⇤ exp(�z/penetrazione) ⇤ exp(�r2/larghezza2)

at the voice “Initial value for u”, and 0 at the voice “Initial time derivative
of u”, applied to the unique domain.

• In the case I > 1 we right-click on “Coe�cient Form PDE” voice and add
an “Initial values” node.
At the “domain 1”, we type 0 at the voice “Initial value for u”, and 0 at the
voice “Initial time derivative of u”.
At the “domain 2”, we type

1� I ⇤ exp(�z/penetrazione) ⇤ exp(�r2/larghezza2)

88



at the voice “Initial value for u”, and 0 at the voice “Initial time derivative
of u”.

As per the Mesh we choose a “Physics-controlled mesh”, with “Extremely fine”
element size (that is to say a triangular Mesh with 0.02 m as “Maximum element
size”).

We use a “Time Dependent Study”, with “Generalized alpha” time stepping
method. The steps taken by solver are manual, with a time step of 10�2.

When the numerical solution is obtained we make an average, right clicking on
“Derived Values” node and choosing “Average ! Line Average”. Then under the
voice “Line Average” we select the domains over which we want to average.
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Chapter 5

Super-lattice composed by
materials with broken symmetry

In this brief chapter we would like to expose some possible applications of our
work.
It is worth to introduce a super-lattice, characterized by a periodic unit cell
composed by layers of di↵erent materials. In our analysis, the chosen materials
support a real order parameter, satisfying GL equation (1.13).
Therefore this theory applies to all materials with a broken symmetry, in
particular superconductors or ferromagnetic materials.

We would like to analyze how a perturbation of the order parameter propagates
through the super-lattice. For this purpose we choose materials with low damping
(↵ << 1). Therefore GL equation reduces to:

1

!2

@2⌘

@t2
� �r2⌘ + A(P, T )⌘ +B(P )⌘3 = 0. (5.1)

Equation (5.1) has the form of a wave equation (the first 2 terms) with a source
term (the last 2 terms).
For sake of simplicity, we work with a 1D super-lattice, with a unit cell character-
ized by 2 layers of di↵erent material.

The general solution of equation (5.1) can be written using the Fourier transform:

⌘(x, t) =

Z +1

�1

Z +1

�1
⌘̃(k,!) eikx ei!t dk d!.

Considering that the equation (5.1) should be solved for the super-lattice geometry,
! must be related to k by a dispersion relation:

! = f(k).
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Our target is to work out the dispersion relation, very useful to predict how a
wave packet propagates through the super-lattice.

The dispersion relation can predict if a certain frequency cannot pass through the
super-lattice, if there are no k values allowed for that frequency. The dispersion
relation can show if there are frequency gaps, i.e. zones in the frequency spectrum
whose frequencies does not pass through the super-lattice.

The dispersion relation can predict the velocity of propagation of a certain
frequency in the super-lattice.

Actually the dispersion relation should depend on the choice of the materials
and on the geometry of the built unit cell. With an opportune choice of the
materials composing the super-lattice or of the unit cell geometry, we can modify
the dispersion relation.

A possible application is the creation of a frequencies filter: with an opportune
choice of the materials we can control the frequency gaps of the super-lattice
so that only certain desired frequencies in a wave packet can pass through the
super-lattice.

There are di↵erent possibilities to simulate this physical situation. In our work we
treat:

1. A “many unit cells geometry”: the super-lattice is approximated by repeating
a lot of times the unit cell. So we see the behavior of a finite super-lattice,
but if we repeat the unit cell for a high number of times the final solution
will be a good approximation to the theoretical infinite super-lattice.

2. A “one unit cell geometry”: we analyze the behavior of a single unit cell. To
reproduce the infinite super-lattice behavior we apply a periodic boundary
condition.
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5.1 Many unit cells geometry

We build a super-lattice composed by 6 unit cells. Each unit cell is composed by
two layers of two di↵erent materials (called “Material 1” and “Material 2”).
We suppose that the two used materials satisfy the GL equation (5.1), and that
they have the same coe�cients !, �, B, but A coe�cient can be di↵erent.
The super-lattice is put between 2 slices, an initial layer and a detector layer,
made of “Material 1”, see figure 5.1.

Figure 5.1: The super-lattice. The black segments represent the “Material 1”, the
orange segments represent the “Material 2”. The used system of coordinate is
indicated.

In this section we would like to see how a wave packet propagates through the
super-lattice. This wave packet is produced by perturbing the order parameter
with a laser pulse (switching o↵ at time t = 0 s), at the beginning of the system
(x = 0).
Since we want to analyze how the pulse passes through the super-lattice, we
impose zero-flux boundary condition at the external boundaries, so the system
is isolated from the external world and we are sure that all the perturbation
is driven towards the super-lattice. From one layer to another we impose the
continuity of the solution and of the first spatial derivative of the solution.

We use COMSOL Multiphysics to obtain a numerical solution of equation (5.1).
First we seek the equilibrium solution ⌘

eq

solving equation (5.1) with a “stationary
study”.
Next we would like to solve the equation (5.1) in the time domain. To simulate
the laser pulse we choose the following expressions as initial values:

⌘(x, t = 0 s) = ⌘
eq

[1� I exp(�x/l
pen

)] , (5.2)

d⌘

dt

����
t=0

= 0 s�1,

applied to all the domains.
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Therefore at the initial time there is a wave packet before the super-lattice
(decreasing exponential perturbation of the equilibrium order parameter). This
packet will evolve and we would like to see if the perturbation passes the
super-lattice.

We compute simulations keeping fixed the following parameters:

• ! = 0.1 s�1;

• � = 0.18 m2;

• l
pen

= 1 m;

• B = 1 (dimensionless).

In “Material 1” we fix A = �1, while in “Material 2” we use di↵erent values of
A (for simplicity we use the notation A2 to mean the coe�cient A used in the
“Material 2”), so that we can have a low or a high contrast between the two
materials.

As for the geometry, we choose a unit cell composed by a 4 m layer of “Material
2” and a 4 m layer of “Material 1”. Then we use a 4 m initial layer and a 20 m
detector layer.

We make a simulation with A2 = �0.9, i.e. the di↵erence between the two ma-
terials is little. The results are exposed in figure 5.2, in which you can see the
order parameter behavior (color scale) in the super-lattice geometry (horizontal
axis) and in time (vertical axis).
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Figure 5.2: The evolution of the order parameter (color scale) in the geometry, as
a function of time, for A2 = �0.9.

Then we make another simulation in which A2 = �0.1, i.e. the di↵erence between
the 2 materials is important. The results are exposed in figure 5.3,

Figure 5.3: The evolution of the order parameter (color scale) in the geometry, as
a function of time, for A2 = �0.1.
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As you can see, in the initial layer the order parameter oscillates in time, in
agreement with the fact that we are dealing with an undamped system.

You can also see that the order parameter passes through the super-lattice, arriving
in the detector layer. However in the detector layer the perturbation intensity is
lower, because the wave packet spreads during the travel through the super-lattice.
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5.2 One unit cell geometry

We can build a unit cell composed by two di↵erent materials (called “Material 1”
and “Material 2”).
We suppose that the two used materials satisfy the GL equation (5.1), and that
they have the same coe�cients !, �, B, but A coe�cient can be di↵erent.

We work with a unit cell of length d, characterized by the geometry shown in
figure 5.4. As you can see half of the unit cell is made of “Material 1” and half of
“Material 2”.

Figure 5.4: The unit cell. The black segments represent the “Material 1”, the
orange segment represents the “Material 2”.

Assuming that the order parameter is slightly perturbed from the equilibrium
value (i.e. �⌘(x, t) = ⌘(x, t) � ⌘

eq

(x) is small) we can assume that the linearized
GL equation (introduced in section 1.4):

1

!2

@2�⌘

@t2
� �

@2�⌘

@x2
+
⇥
A+ 3B (⌘

eq

)2
⇤
�⌘ = 0, (5.3)

holds in all the unit cell.

Then we would like to simulate the periodicity of the unit cell, so we assume that
the order parameter satisfies the Bloch condition:

�⌘(x, t) = eikxu
k

(x, t), (5.4)

with u
k

(x = 0, t) = u
k

(x = d, t).

In the current section we focus our attention at the center of the first Brillouin
zone, therefore we fix k = 0 m�1.
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Therefore we make the substitution �⌘(x, t) = u0(x, t) in equation (5.3) to obtain:

1

!2

@2u0

@t2
� �

@2u0

@x2
+
⇥
A+ 3B (⌘

eq

)2
⇤
u0 = 0. (5.5)

For both materials we choose the following parameters:

• ! = 0.1 s�1;

• � = 0.18 m2;

• B = 1 (dimensionless).

In “Material 1” we fix A = �1.

For simplicity we use the notation A2 to mean the coe�cient A used in the
“Material 2”. We make some simulations changing the value of A2 (i.e. changing
the contrast between the 2 used materials).

As for the geometry, we choose a unit cell with length d = 8 m.

For each value of A2, we make a simulation using COMSOL Multiphysics. In
particular we solve the equilibrium equation (1.10) for a real order parameter nu-
merically, with a “Stationary Study”, to evaluate ⌘

eq

; then we use the equilibrium
value found to look for the first 10 eigenvalues of equation (5.5).

In figure 5.5 we report the relative distance between the second and the third
eigenvalue (�!

eig

), as a function of the value of A2 coe�cient.

As you can see, when the unit cell is composed by an homogeneous material
(A2 = �1) the second and the third eigenvalue are degenerate.

When A2 increases, the contrast between the 2 used materials grows. The second
and the third eigenvalue split and so we can understand that there is a gap in the
frequency spectrum. The more the “Material 2” is di↵erent from the “Material
1” (the more A2 grows in our simulations), the more the frequency gap increases.

It is also interesting to point out that the gap value is appreciable, because it is
up to 15% of the eigenvalue values.
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Figure 5.5: Plot of �!
eig

vs A2. Reminding that in “Material 1” we use A = �1,
the contrast is high when A2 is near to 0.
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Appendix

Remarks about the damped harmonic oscillator

In this section we report the solutions of the damped harmonic oscillator di↵er-
ential equation.

A damped harmonic oscillator satisfies the di↵erential equation:

@2x

@t2
+ ↵!

@x

@t
+ !2x = 0, (1)

with ↵ > 0 and ! > 0.

To solve it we look for the solutions of the following equation:

�2 + ↵!�+ !2 = 0. (2)

We have 3 possibilities:

1. Underdamped harmonic oscillator, if

� = ↵2!2 � 4!2 < 0, (3)

(i.e. ↵ < 2).

In this case the solutions of (2) are:

�± = �↵!

2
± i

r
|�|
4

.

Hence equation (1) has the general solution:

x(t) = exp
⇣
�↵!

2
t
⌘"

k1 exp

 
i

r
|�|
4

t

!
+ k2 exp

 
�i

r
|�|
4

t

!#
, (4)

100



where k1 and k2 are constants which can be fixed using appropriate
boundary conditions.

As you can see from solution (4), x oscillates with a decreasing in time
amplitude.

2. Overdamped harmonic oscillator, if

� = ↵2!2 � 4!2 > 0, (5)

(i.e. ↵ > 2).

In this case the solutions of (2) are:

�± = �↵!

2
±
r

�

4
.

Hence equation (1) has the general solution:

x(t) = k1 exp

" 
�↵!

2
+

r
�

4

!
t

#
+ k2 exp

" 
�↵!

2
�
r

�

4

!
t

#
, (6)

where k1 and k2 are constants which can be fixed using appropriate
boundary conditions.

From equation (5) we obtain:

↵!

2
=

r
↵2!2

4
>

r
↵2!2

4
� !2 =

r
�

4
,

which tells us that in equation (6) there are two decreasing exponential
functions.

When ↵ grows, the second exponential becomes smaller and the first expo-
nential becomes larger. Therefore when ↵ is large enough the first exponen-
tial dominates and x(t) falls slowly to the equilibrium value with respect to
the case of lower damping.

3. Critically damped harmonic oscillator, if

� = ↵2!2 � 4!2 = 0, (7)
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(i.e. ↵ = 2).

In this case the solutions of (2) are degenerate:

�± = �↵!

2
.

Hence equation (1) has the general solution:

x(t) = k1 exp
⇣
�↵!

2
t
⌘
+ k2 t exp

⇣
�↵!

2
t
⌘
, (8)

where k1 and k2 are constants which can be fixed using appropriate
boundary conditions.
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